Dynamical Mechanism and Energy Conversion of the Couette-Taylor Flow

被引:2
|
作者
Wang, Heyuan [1 ,2 ]
机构
[1] Shenyang Normal Univ, Coll Math & Systemat Sci, Shenyang 110034, Liaoning, Peoples R China
[2] Liaoning Univ Technol, Coll Sci, Jinzhou 121001, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Couette-Taylor flow; dynamical mechanism; Kolmogorov system; chaos; KOLMOGOROV; TRUNCATION; SYSTEMS; CYCLE;
D O I
10.1142/S0218127419501001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the dynamical mechanism and energy conversion of the Couette-Taylor flow. The Couette-Taylor flow chaotic system is transformed into the Kolmogorov type system, which is decomposed into four types of torques. Combining different torques, the key factors of chaos generation and the physical interpretation of the Couette Taylor flow are studied. We further investigate the conversion among Hamiltonian, kinetic and potential energies, as well as the correlation between the energies and the Reynolds number. It is concluded that the combination of the four torques is necessary to produce chaos, and the system can produce chaos only when the dissipative torques match the driving (external) torques. Any combination of three types of torques cannot produce chaos. Moreover, we introduce the Casimir function to analyze the system dynamics, and choose its derivation to formulate the energy conversion. The bound of chaotic attractor is obtained by the Casimir function and Lagrange multiplier. It is found that the Casimir function reflects the energy conversion and the distance between the orbit and the equilibria.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Vortex pairs in viscoelastic Couette-Taylor flow
    Lange, M.
    Eckhardt, B.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (2 II): : 273011 - 273014
  • [22] Spectral galerkin approximation of couette-taylor flow
    Wang He-yuan
    Li Kai-tai
    Applied Mathematics and Mechanics, 2004, 25 (10) : 1184 - 1193
  • [23] THE COUETTE-TAYLOR PROBLEM
    TAGG, R
    NONLINEAR SCIENCE TODAY, 1994, 4 (03): : 1 - +
  • [24] Vortex pairs in viscoelastic Couette-Taylor flow
    Lange, M
    Eckhardt, B
    PHYSICAL REVIEW E, 2001, 64 (02):
  • [25] NONPROPAGATING OSCILLATORY MODES IN COUETTE-TAYLOR FLOW
    ZHANG, LH
    SWINNEY, HL
    PHYSICAL REVIEW A, 1985, 31 (02): : 1006 - 1009
  • [26] Analysis of the flow pattern modifications in a bubbly Couette-Taylor flow
    Mehel, A.
    Gabillet, C.
    Djeridi, H.
    PHYSICS OF FLUIDS, 2007, 19 (11)
  • [27] COUETTE-TAYLOR STATIONARY FLOW OF A POLYMER-SOLUTION
    ROESNER, K
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1985, 301 (20): : 1387 - 1390
  • [28] Measuring nonextensitivity parameters in a turbulent Couette-Taylor flow
    Beck, C
    Lewis, GS
    Swinney, HL
    PHYSICAL REVIEW E, 2001, 63 (03): : 353031 - 353034
  • [29] Heat generation in a Couette-Taylor flow multicylinder system
    Mamonov, V. N.
    Miskiv, N. B.
    Nazarov, A. D.
    Serov, A. F.
    Terekhov, V. I.
    THERMOPHYSICS AND AEROMECHANICS, 2019, 26 (05) : 683 - 692
  • [30] Liquid-liquid Couette-Taylor flow investigations
    Dluska, E
    Wronski, S
    INZYNIERIA CHEMICZNA I PROCESOWA, 2004, 25 (03): : 813 - 818