Water Activated Graphene Oxide Transfer Using Wax Printed Membranes for Fast Patterning of a Touch Sensitive Device

被引:26
作者
Baptista-Pires, Luis [1 ,2 ]
Mayorga-Martinez, Carmen C. [1 ,2 ]
Medina-Sanchez, Mariana [1 ,2 ]
Monton, Helena [1 ,2 ]
Merkoci, Arben [1 ,2 ,3 ]
机构
[1] CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Barcelona 08193, Spain
[2] Barcelona Inst Sci & Technol, Campus UAB, Barcelona 08193, Spain
[3] ICREA, Barcelona 08010, Spain
关键词
graphene oxide; wax printed membranes; patterning; transfer; touch sensor; FIELD-EFFECT TRANSISTORS; MICRO-SUPERCAPACITORS; GRAPHITE OXIDE; HIGH-POWER; SEMICONDUCTOR NANOSTRUCTURES; TRANSPARENT ELECTRODES; ULTRATHIN FILMS; REDUCTION; TEMPERATURE; EFFICIENCY;
D O I
10.1021/acsnano.5b05963
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate a graphene oxide printing technology using wax printed membranes for the fast patterning and water activation transfer using pressure based mechanisms. The wax printed membranes have 50 pm resolution, longtime stability and infinite shaping capability. The use of these membranes complemented with the vacuum filtration of graphene oxide provides the control over the thickness; Our demonstration provides a solvent free methodology for printing graphene oxide devices in all shapes and all substrates using the roll-to-roll automatized mechanism present in the wax printing machine. Graphene oxide was transferred over a wide variety of substrates as textile Or PET in between others. Finally, we developed a touch switch sensing device integrated in a LED electronic circuit.
引用
收藏
页码:853 / 860
页数:8
相关论文
共 48 条
[1]   Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics [J].
Carrilho, Emanuel ;
Martinez, Andres W. ;
Whitesides, George M. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :7091-7095
[2]   One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films [J].
Dong, Teng-Yuan ;
Chen, Wei-Ting ;
Wang, Ching-Wen ;
Chen, Chiao-Pei ;
Chen, Chen-Ni ;
Lin, Ming-Cheng ;
Song, Jenn-Ming ;
Chen, In-Gann ;
Kao, Tzu-Hsuan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (29) :6269-6275
[3]   All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide [J].
Dua, Vineet ;
Surwade, Sumedh P. ;
Ammu, Srikanth ;
Agnihotra, Srikanth Rao ;
Jain, Sujit ;
Roberts, Kyle E. ;
Park, Sungjin ;
Ruoff, Rodney S. ;
Manohar, Sanjeev K. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (12) :2154-2157
[4]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[5]   Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage [J].
El-Kady, Maher F. ;
Kaner, Richard B. .
NATURE COMMUNICATIONS, 2013, 4
[6]   Inorganic semiconductor nanostructures and their field-emission applications [J].
Fang, Xiaosheng ;
Bando, Yoshio ;
Gautam, Ujjal K. ;
Ye, Changhui ;
Golberg, Dmitri .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (05) :509-522
[7]   A low-temperature method to produce highly reduced graphene oxide [J].
Feng, Hongbin ;
Cheng, Rui ;
Zhao, Xin ;
Duan, Xiangfeng ;
Li, Jinghong .
NATURE COMMUNICATIONS, 2013, 4
[8]   Thermochemical nanopatterning of organic semiconductors [J].
Fenwick, Oliver ;
Bozec, Laurent ;
Credgington, Dan ;
Hammiche, Azzedine ;
Lazzerini, Giovanni Mattia ;
Silberberg, Yaron R. ;
Cacialli, Franco .
NATURE NANOTECHNOLOGY, 2009, 4 (10) :664-668
[9]  
Gao W, 2011, NAT NANOTECHNOL, V6, P496, DOI [10.1038/NNANO.2011.110, 10.1038/nnano.2011.110]
[10]  
Gao W, 2009, NAT CHEM, V1, P403, DOI [10.1038/NCHEM.281, 10.1038/nchem.281]