Regulating solute partitioning utilized to decorate grain boundary for improving corrosion resistance in a model Al-Cu-Mg alloy

被引:34
作者
Liu, Xuebing [1 ]
Zhang, Di [2 ]
Wang, Hui [3 ]
Yan, Yu [4 ]
Zhang, Xinfang [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Met & Ecol Engn, State Key Lab Adv Met, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[3] Nucl Power Inst China, Sci & Technol Reactor Fuel & Mat Lab, Chengdu 610041, Peoples R China
[4] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Pulsed electric field; Solute partitioning; Grain boundary precipitation; Solute depletion zone; Intergranular corrosion; INTERGRANULAR CORROSION; MECHANICAL-PROPERTIES; ALUMINUM-ALLOYS; PRECIPITATION; SEGREGATION; BEHAVIOR; MICROSTRUCTURE; AG; EMBRITTLEMENT; STRENGTH;
D O I
10.1016/j.corsci.2020.109219
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The precise manipulation of grain boundary microstructure, including interfacial solute partition and precipitate distribution, is crucial for regulating the corrosion resistance of age-hardening aluminum alloys. In this study, we explored a novel manipulation pathway, the pulsed electric field (PEC), to regulate solute segregation to grain boundary to form a specific grain boundary structure. The calculated atomic diffusion results reveal that the PEC can stimulate atomic diffusion by decreasing the energy required for diffusion, through which the continuous distribution of grain boundary precipitates and solute depletion zone formation can be inhibited. Hence, the corrosion resistance is significantly improved.
引用
收藏
页数:17
相关论文
共 79 条
  • [1] Abbas M.K., 2009, IRAQI J MECH MAT ENG, P278
  • [2] Effect of ageing on precipitation kinetics, tensile and work hardening behavior of Al-Cu-Mg (2024) alloy
    Alexopoulos, Nikolaos D.
    Velonaki, Zaneta
    Stergiou, Constantinos I.
    Kourkoulis, Stavros K.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 700 : 457 - 467
  • [3] [Anonymous], METALS HDB CORROSION
  • [4] [Anonymous], 2009, G110 ASTM INT
  • [5] Impact of ultrafine-grained microstructure on the corrosion of aluminium alloy AA2024
    Brunner, J. G.
    Birbilis, N.
    Ralston, K. D.
    Virtanen, S.
    [J]. CORROSION SCIENCE, 2012, 57 : 209 - 214
  • [6] Callister W. D., 2007, MAT SCI ENG INTRO
  • [7] Effect of Ag content and heat treatment on the stress corrosion cracking of Al-4.6Cu-0.3Mg alloy
    Chang, CH
    Lee, SL
    Lin, JC
    Yeh, MS
    Jeng, RR
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2005, 91 (2-3) : 454 - 462
  • [8] Natural aging on Al-Cu-Mg structural hardening alloys - Investigation of two historical duralumins for aeronautics
    Cochard, A.
    Zhu, K.
    Joulie, S.
    Douin, J.
    Huez, J.
    Robbiola, L.
    Sciau, P.
    Brunet, M.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 690 : 259 - 269
  • [9] Davis J.R., 2012, P ASME MICR NAN HEAT
  • [10] In situ evaluation of dynamic precipitation during plastic straining of an Al-Zn-Mg-Cu alloy
    Deschamps, A.
    Fribourg, G.
    Brechet, Y.
    Chemin, J. L.
    Hutchinson, C. R.
    [J]. ACTA MATERIALIA, 2012, 60 (05) : 1905 - 1916