RNA polymerases as moving barriers to condensin loop extrusion

被引:82
作者
Brandao, Hugo B. [1 ]
Paul, Payel [2 ]
van den Berg, Aafke A. [3 ]
Rudner, David Z. [4 ]
Wang, Xindan [2 ]
Mirny, Leonid A. [1 ,3 ,5 ]
机构
[1] Harvard Univ, Grad Program Biophys, Cambridge, MA 02138 USA
[2] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
[3] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Harvard Med Sch, Dept Microbiol & Immunobiol, Boston, MA 02115 USA
[5] MIT, Dept Phys, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
加拿大自然科学与工程研究理事会;
关键词
condensin; transcription; loop extrusion; SMC; chromosome conformation capture; ESCHERICHIA-COLI; COHESIN; CHROMOSOME; TRANSCRIPTION; ORGANIZATION; ARCHITECTURE; GENOME; ORIGIN; CTCF; SMC;
D O I
10.1073/pnas.1907009116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To separate replicated sister chromatids during mitosis, eukaryotes and prokaryotes have structural maintenance of chromosome (SMC) condensin complexes that were recently shown to organize chromosomes by a process known as DNA loop extrusion. In rapidly dividing bacterial cells, the process of separating sister chromatids occurs concomitantly with ongoing transcription. How transcription interferes with the condensin loop-extrusion process is largely unexplored, but recent experiments have shown that sites of high transcription may directionally affect condensin loop extrusion. We quantitatively investigate different mechanisms of interaction between condensin and elongating RNA polymerases (RNAPs) and find that RNAPs are likely steric barriers that can push and interact with condensins. Supported by chromosome conformation capture and chromatin immunoprecipitation for cells after transcription inhibition and RNAP degradation, we argue that translocating condensins must bypass transcribing RNAPs within similar to 1 to 2 s of an encounter at rRNA genes and within similar to 10 s at protein-coding genes. Thus, while individual RNAPs have little effect on the progress of loop extrusion, long, highly transcribed operons can significantly impede the extrusion process. Our data and quantitative models further suggest that bacterial condensin loop extrusion occurs by 2 independent, uncoupled motor activities; the motors translocate on DNA in opposing directions and function together to enlarge chromosomal loops, each independently bypassing steric barriers in their path. Our study provides a quantitative link between transcription and 3D genome organization and proposes a mechanism of interactions between SMC complexes and elongating transcription machinery relevant from bacteria to higher eukaryotes.
引用
收藏
页码:20489 / 20499
页数:11
相关论文
共 70 条
[1]   Self-organization of domain structures by DNA-loop-extruding enzymes [J].
Alipour, Elnaz ;
Marko, John F. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (22) :11202-11212
[2]   In Vivo Architecture and Action of Bacterial Structural Maintenance of Chromosome Proteins [J].
Badrinarayanan, Anjana ;
Reyes-Lamothe, Rodrigo ;
Uphoff, Stephan ;
Leake, Mark C. ;
Sherratt, David J. .
SCIENCE, 2012, 338 (6106) :528-531
[3]   Limits of Chromosome Compaction by Loop-Extruding Motors [J].
Banigan, Edward J. ;
Mirny, Leonid A. .
PHYSICAL REVIEW X, 2019, 9 (03)
[4]   A folded conformation of MukBEF and cohesin [J].
Burmann, Frank ;
Lee, Byung-Gil ;
Than, Thane ;
Sinn, Ludwig ;
O'Reilly, Francis J. ;
Yatskevich, Stanislau ;
Rappsilber, Juri ;
Hu, Bin ;
Nasmyth, Kim ;
Lowe, Jan .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2019, 26 (03) :227-+
[5]   Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl [J].
Busslinger, Georg A. ;
Stocsits, Roman R. ;
van der Lelij, Petra ;
Axelsson, Elin ;
Tedeschi, Antonio ;
Galjart, Niels ;
Peters, Jan-Michael .
NATURE, 2017, 544 (7651) :503-+
[6]   Genome-wide study of mRNA degradation and transcript elongation in Escherichia coli [J].
Chen, Huiyi ;
Shiroguchi, Katsuyuki ;
Ge, Hao ;
Xie, Xiaoliang Sunney .
MOLECULAR SYSTEMS BIOLOGY, 2015, 11 (01)
[7]   Rapid movement and transcriptional re-localization of human cohesin on DNA [J].
Davidson, Iain F. ;
Goetz, Daniela ;
Zaczek, Maciej P. ;
Molodtsov, Maxim I. ;
in't Veld, Pim J. Huis ;
Weissmann, Florian ;
Litos, Gabriele ;
Cisneros, David A. ;
Ocampo-Hafalla, Maria ;
Ladurner, Rene ;
Uhlmann, Frank ;
Vaziri, Alipasha ;
Peters, Jan-Michael .
EMBO JOURNAL, 2016, 35 (24) :2671-2685
[8]   Structure of Full-Length SMC and Rearrangements Required for Chromosome Organization [J].
Diebold-Durand, Marie-Laure ;
Lee, Hansol ;
Avila, Laura B. Ruiz ;
Noh, Haemin ;
Shin, Ho-Chul ;
Im, Haeri ;
Bock, Florian P. ;
Buermann, Frank ;
Durand, Alexandre ;
Basfeld, Alrun ;
Ham, Sihyun ;
Basquin, Jerome ;
Oh, Byung-Ha ;
Gruber, Stephan .
MOLECULAR CELL, 2017, 67 (02) :334-+
[9]   Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism [J].
Eeftens, Jorine M. ;
Bisht, Shveta ;
Kerssemakers, Jacob ;
Kschonsak, Marc ;
Haering, Christian H. ;
Dekker, Cees .
EMBO JOURNAL, 2017, 36 (23) :3448-3457
[10]   Condensin Smc2-Smc4 Dimers Are Flexible and Dynamic [J].
Eeftens, Jorine M. ;
Katan, Allard J. ;
Kschonsak, Marc ;
Hassler, Markus ;
de Wilde, Liza ;
Dief, Essam M. ;
Haering, Christian H. ;
Dekker, Cees .
CELL REPORTS, 2016, 14 (08) :1813-1818