Organic Linker Defines the Excited-State Decay of Photocatalytic MIL-125(Ti)-Type Materials

被引:102
作者
Santaclara, Jara G. [1 ]
Nasalevich, Maxim A. [1 ]
Castellanos, Sonia [1 ]
Evers, Wiel H. [2 ,3 ]
Spoor, Frank C. M. [2 ]
Rock, Kamila [4 ]
Siebbeles, Laurens D. A. [2 ]
Kapteijn, Freek [1 ]
Grozema, Ferdinand [2 ]
Houtepen, Arjan [2 ]
Gascon, Jorge [1 ]
Hunger, Johannes [4 ]
van der Veen, Monique A. [1 ]
机构
[1] Delft Univ Technol, Dept Chem Engn, Catalysis Engn, Julianalaan 136, NL-2628 BL Delft, Netherlands
[2] Delft Univ Technol, Dept Chem Engn, Optoelect Mat, Julianalaan 136, NL-2628 BL Delft, Netherlands
[3] Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[4] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
关键词
amines; metal-organic frameworks; photochemistry; titanium; water splitting; ELECTRON-TRANSFER; RADICAL CATIONS; AROMATIC-AMINES; WATER OXIDATION; PHOTOSYSTEM-II; TRIPLET-STATES; CO2; REDUCTION; FRAMEWORKS; ANILINE; TITANIUM(IV);
D O I
10.1002/cssc.201501353
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, MIL-125(Ti) and NH2-MIL-125(Ti), two titanium-based metal-organic frameworks, have attracted significant research attention in the field of photocatalysis for solar fuel generation. This work reveals that the differences between these structures are not only based on their light absorption range but also on the decay profile and topography of their excited states. In contrast to MIL-125(Ti), NH2-MIL-125(Ti) shows markedly longer lifetimes of the charge-separated state, which improves photoconversion by the suppression of competing decay mechanisms. We used spectroelectrochemistry and ultrafast spectroscopy to demonstrate that upon photoexcitation in NH2-MIL-125(Ti) the electron is located in the Ti-oxo clusters and the hole resides on the aminoterephthalate unit, specifically on the amino group. The results highlight the role of the amino group in NH2-MIL-125(Ti), the electron donation of which extends the lifetime of the photoexcited state substantially.
引用
收藏
页码:388 / 395
页数:8
相关论文
共 56 条
[31]   Water-splitting chemistry of photosystem II [J].
McEvoy, James P. ;
Brudvig, Gary W. .
CHEMICAL REVIEWS, 2006, 106 (11) :4455-4483
[32]   Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation [J].
Megiatto, Jackson D., Jr. ;
Antoniuk-Pablant, Antaeres ;
Sherman, Benjamin D. ;
Kodis, Gerdenis ;
Gervaldo, Miguel ;
Moore, Thomas A. ;
Moore, Ana L. ;
Gust, Devens .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (39) :15578-15583
[33]   Energy Conversion in Photosynthesis: A Paradigm for Solar Fuel Production [J].
Moore, Gary F. ;
Brudvig, Gary W. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 2, 2011, 2 :303-327
[34]   Effect of ethylbenzene in p-xylene selectivity of the porous titanium amino terephthalate MIL-125(Ti)_NH2 [J].
Moreira, M. A. ;
Santos, J. C. ;
Ferreira, A. F. P. ;
Loureiro, J. M. ;
Ragon, F. ;
Horcajada, P. ;
Yot, P. G. ;
Serre, C. ;
Rodrigues, A. E. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2012, 158 :229-234
[35]   Co@NH2-MIL-125(Ti): cobaloxime-derived metal-organic framework-based composite for light-driven H2 production [J].
Nasalevich, M. A. ;
Becker, R. ;
Ramos-Fernandez, E. V. ;
Castellanos, S. ;
Veber, S. L. ;
Fedin, M. V. ;
Kapteijn, F. ;
Reek, J. N. H. ;
van der Vlugt, J. I. ;
Gascon, J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (01) :364-375
[36]   Metal-organic frameworks as heterogeneous photocatalysts: advantages and challenges [J].
Nasalevich, M. A. ;
van der Veen, M. ;
Kapteijn, F. ;
Gascon, J. .
CRYSTENGCOMM, 2014, 16 (23) :4919-4926
[37]   Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis [J].
Nasalevich, Maxim A. ;
Goesten, Maarten G. ;
Savenije, Tom J. ;
Kapteijn, Freek ;
Gascon, Jorge .
CHEMICAL COMMUNICATIONS, 2013, 49 (90) :10575-10577
[38]   Origin of Catalytic Effect in the Reduction of CO2 at Nanostructured TiO2 Films [J].
Ramesha, Ganganahalli K. ;
Brennecke, Joan F. ;
Kamat, Prashant V. .
ACS CATALYSIS, 2014, 4 (09) :3249-3254
[39]  
Rodenas T, 2015, NAT MATER, V14, P48, DOI [10.1038/NMAT4113, 10.1038/nmat4113]
[40]   ANODIC OXIDATION PATHWAYS OF AROMATIC AMINES . ELECTROCHEMICAL AND ELECTRON PARAMAGNETIC RESONANCE STUDIES [J].
SEO, ET ;
NELSON, RF ;
FRITSCH, JM ;
MARCOUX, LS ;
LEEDY, DW ;
ADAMS, RN .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1966, 88 (15) :3498-&