Tuning the Size and Shape of NanoMOFs via Templated Electrodeposition and Subsequent Electrochemical Oxidation

被引:28
作者
Caddeo, Francesco [1 ]
Vogt, Rebekka [2 ,3 ]
Weil, Dominik [2 ,3 ]
Sigle, Wilfried [4 ]
Toimil-Molares, M. Eugenia [2 ]
Maijenburg, A. Wouter [1 ,2 ]
机构
[1] Martin Luther Univ Halle Wittenberg, ZIK SiLi Nano, Karl Freiherr von Fritsch Str 3, D-06120 Halle, Saale, Germany
[2] GSI Helmholtz Ctr Heavy Ion Res, Mat Res Dept, Planckstr 1, D-64291 Darmstadt, Germany
[3] Tech Univ Darmstadt, Mat & Geowissensch, Alarich Weiss Str 2, D-64287 Darmstadt, Germany
[4] Stuttgart Ctr Electron Microscopy StEM, MPI Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
关键词
nanoMOFs; MOF nanowires; nanowire networks; anodic oxidation; HKUST-1; METAL-ORGANIC FRAMEWORK; NANOWIRES; GROWTH; DEPOSITION; CONVERSION; MECHANISM; PRESSURE; CRYSTALS; COATINGS; HKUST-1;
D O I
10.1021/acsami.9b04449
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The control over the size and shape of nanoMOFs is essential for their exploitation in integrated devices such as sensors, membranes for gas separation, photoelectrodes, etc. Here, we demonstrate the synthesis of nanowires and three-dimensionally interconnected nanowire networks of Cu-based metal organic frameworks (MOFs) by a combination of ion-track technology and electrochemical methods. In particular, Cu nanowires and nanowire networks were electrodeposited inside polymeric etched ion-track membranes and subsequently converted by electrochemical oxidation into different Cu-based MOFs such as the well-known Cu-3(BTC)(2) (also known as HKUST-1) and the lesser-known MOF Cu(INA)(2). The MOFs are formed inside the template, therefore adopting the shape of the host nanochannels. The synthesized MOF nanowires exhibit tunable diameters between 80 and 260 nm. Characterization by X-ray diffraction, thermogravirnetric analysis/differential scanning calorimetry, scanning electron microscopy, and transmission electron microscopy indicates that the employed electrochemical conversion includes the formation of Cu2O as an intermediate, as well as the initial formation of an amorphous MOF phase, which crystallizes upon longer reaction times.
引用
收藏
页码:25378 / 25387
页数:10
相关论文
共 56 条
  • [1] Electrosynthesis of Metal-Organic Frameworks: Challenges and Opportunities
    Al-Kutubi, Hanan
    Gascon, Jorge
    Sudhoelter, Ernst J. R.
    Rassaei, Liza
    [J]. CHEMELECTROCHEM, 2015, 2 (04): : 462 - 474
  • [2] Patterned film growth of metal-organic frameworks based on galvanic displacement
    Ameloot, Rob
    Pandey, Lesley
    Van der Auweraer, Mark
    Alaerts, Luc
    Sels, Bert F.
    De Vos, Dirk E.
    [J]. CHEMICAL COMMUNICATIONS, 2010, 46 (21) : 3735 - 3737
  • [3] Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis
    Ameloot, Rob
    Stappers, Linda
    Fransaer, Jan
    Alaerts, Luc
    Sels, Bert F.
    De Vos, Dirk E.
    [J]. CHEMISTRY OF MATERIALS, 2009, 21 (13) : 2580 - 2582
  • [4] Metal-Organic Framework (MOF) Nanorods, Nanotubes, and Nanowires
    Arbulu, Roberto C.
    Jiang, Ying-Bing
    Peterson, Eric J.
    Qin, Yang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (20) : 5813 - 5817
  • [5] From Micro to Nano: A Toolbox for Tuning Crystal Size and Morphology of Benzotriazolate-Based Metal-Organic Frameworks
    Bunzen, Hana
    Grzywa, Maciej
    Hambach, Manuel
    Spirkl, Sebastian
    Volkmer, Dirk
    [J]. CRYSTAL GROWTH & DESIGN, 2016, 16 (06) : 3190 - 3197
  • [6] High pressure, high temperature electrochemical synthesis of metal-organic frameworks: films of MIL-100 (Fe) and HKUST-1 in different morphologies
    Campagnol, Nicolo
    Van Assche, Tom
    Boudewijns, Tom
    Denayer, Joeri
    Binnemans, Koen
    De Vos, Dirk
    Fransaer, Jan
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (19) : 5827 - 5830
  • [7] A microporous metal-organic framework for gas-chromatographic separation of alkanes
    Chen, BL
    Liang, CD
    Yang, J
    Contreras, DS
    Clancy, YL
    Lobkovsky, EB
    Yaghi, OM
    Dai, S
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (09) : 1390 - 1393
  • [8] A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n
    Chui, SSY
    Lo, SMF
    Charmant, JPH
    Orpen, AG
    Williams, ID
    [J]. SCIENCE, 1999, 283 (5405) : 1148 - 1150
  • [9] Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage
    Eddaoudi, M
    Kim, J
    Rosi, N
    Vodak, D
    Wachter, J
    O'Keeffe, M
    Yaghi, OM
    [J]. SCIENCE, 2002, 295 (5554) : 469 - 472
  • [10] Thin Film Thermoelectric Metal-Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity
    Erickson, Kristopher J.
    Leonard, Francois
    Stavila, Vitalie
    Foster, Michael E.
    Spataru, Catalin D.
    Jones, Reese E.
    Foley, Brian M.
    Hopkins, Patrick E.
    Allendorf, Mark D.
    Talin, A. Alec
    [J]. ADVANCED MATERIALS, 2015, 27 (22) : 3453 - 3459