Initial value problem for mixed-type differential equations

被引:4
|
作者
Cassell, JS
Hou, ZY
机构
[1] Dept. of Comp. and Info. Systems, London Guildhall University, London EC3N 1JY, 100 Minories, Tower Hill
来源
MONATSHEFTE FUR MATHEMATIK | 1997年 / 124卷 / 02期
关键词
mixed-type equations; existence; uniqueness; extension;
D O I
10.1007/BF01300616
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The initial value problem is discussed for a class of linear functional differential equations of mixed type and various criteria on existence and uniqueness are obtained.
引用
收藏
页码:133 / 145
页数:13
相关论文
共 50 条
  • [1] Initial value problem for mixed-type differential equations
    J. S. Cassell
    Zhanyuan Hou
    Monatshefte für Mathematik, 1997, 124 : 133 - 145
  • [2] Boundary Value Problems of Nonlinear Mixed-Type Fractional Differential Equations
    Yu, Ping
    Li, Hongju
    Ding, Jian
    Ma, Yanli
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [3] Conditional Correctness of the Initial-Boundary Value Problem for a System of High-Order Mixed-Type Equations
    Fayazov, K. S.
    Khajiev, I. O.
    RUSSIAN MATHEMATICS, 2022, 66 (02) : 53 - 63
  • [4] Conditional Correctness of the Initial-Boundary Value Problem for a System of High-Order Mixed-Type Equations
    K. S. Fayazov
    I. O. Khajiev
    Russian Mathematics, 2022, 66 : 53 - 63
  • [5] A note on initial value problem for the generalized Tricomi equation in a mixed-type domain
    Zhang, Kang Qun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (08) : 1581 - 1596
  • [6] New Sequential Fractional Differential Equations with Mixed-Type Boundary Conditions
    Zhang, Haiyan
    Li, Yaohong
    Yang, Jingbao
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [7] Initial Value Problem for Mixed Differential Equations of Variable Order with Finite Delay
    Guedim, Souad
    Benkerrouche, Amar
    Sitthithakerngkiet, Kanokwan
    Souid, Mohammed Said
    Amara, Abdelkader
    SYMMETRY-BASEL, 2025, 17 (02):
  • [8] GLOBAL SOLUTIONS TO MIXED-TYPE NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS
    Diblik, Josef
    Vazanova, Gabriela
    MATHEMATICS, INFORMATION TECHNOLOGIES AND APPLIED SCIENCES 2018, 2018, : 44 - 54
  • [9] Stability and determinacy conditions for mixed-type functional differential equations*
    d'Albis, Hippolyte
    Augeraud-Veron, Emmanuelle
    Hupkes, Hermen Jan
    JOURNAL OF MATHEMATICAL ECONOMICS, 2014, 53 : 119 - 129
  • [10] POSITIVE SOLUTIONS OF ITERATIVE FUNCTIONAL DIFFERENTIAL EQUATIONS AND APPLICATION TO MIXED-TYPE FUNCTIONAL DIFFERENTIAL EQUATIONS
    Zhou, J. U. N.
    Shen, J. U. N.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (07): : 3605 - 3624