Multiqubit randomized benchmarking using few samples

被引:30
作者
Helsen, Jonas [1 ]
Wallman, Joel J. [2 ,3 ]
Flammia, Steven T. [4 ,5 ]
Wehner, Stephanie [1 ]
机构
[1] Delft Univ Technol, QuTech, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[4] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW 02142, Australia
[5] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
基金
澳大利亚研究理事会;
关键词
D O I
10.1103/PhysRevA.100.032304
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Randomized benchmarking (RB) is an efficient and robust method to characterize gate errors in quantum circuits. Averaging over random sequences of gates leads to estimates of gate errors in terms of the average fidelity. These estimates are isolated from the state preparation and measurement errors that plague other methods such as channel tomography and direct fidelity estimation. A decisive factor in the feasibility of randomized benchmarking is the number of sampled sequences required to obtain rigorous confidence intervals. Previous bounds were either prohibitively loose or required the number of sampled sequences to scale exponentially with the number of qubits in order to obtain a fixed confidence interval at a fixed error rate. Here, we show that, with a small adaptation to the randomized benchmarking procedure, the number of sampled sequences required for a fixed confidence interval is dramatically smaller than could previously be justified. In particular, we show that the number of sampled sequences required is essentially independent of the number of qubits and scales favorably with the average error rate of the system under investigation. We also investigate the fitting procedure inherent to randomized benchmarking in light of our results and find that standard methods such as ordinary least squares optimization can give misleading results. We therefore recommend moving to more sophisticated fitting methods such as iteratively reweighted least squares optimization. Our results bring rigorous randomized benchmarking on systems with many qubits into the realm of experimental feasibility.
引用
收藏
页数:31
相关论文
共 65 条
[1]   Independent, extensible control of same-frequency superconducting qubits by selective broadcasting [J].
Asaad, Serwan ;
Dickel, Christian ;
Langford, Nathan K. ;
Poletto, Stefano ;
Bruno, Alessandro ;
Rol, Michiel Adriaan ;
Deurloo, Duije ;
DiCarlo, Leonardo .
NPJ QUANTUM INFORMATION, 2016, 2
[2]   Rolling quantum dice with a superconducting qubit [J].
Barends, R. ;
Kelly, J. ;
Veitia, A. ;
Megrant, A. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Hoi, I. -C. ;
Jeffrey, E. ;
Neill, C. ;
O'Malley, P. J. J. ;
Mutus, J. ;
Quintana, C. ;
Roushan, P. ;
Sank, D. ;
Wenner, J. ;
White, T. C. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW A, 2014, 90 (03)
[3]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[4]  
Blume-Kohout R., NAT PHYS
[5]  
Boyd Stephen P., 2014, Convex Optimization
[6]   Bounding the average gate fidelity of composite channels using the unitarity [J].
Carignan-Dugas, Arnaud ;
Wallman, Joel J. ;
Emerson, Joseph .
NEW JOURNAL OF PHYSICS, 2019, 21 (05)
[7]   Characterizing universal gate sets via dihedral benchmarking [J].
Carignan-Dugas, Arnaud ;
Wallman, Joel J. ;
Emerson, Joseph .
PHYSICAL REVIEW A, 2015, 92 (06)
[8]  
Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609
[9]   Scalable randomised benchmarking of non-Clifford gates [J].
Cross, Andrew W. ;
Magesan, Easwar ;
Bishop, Lev S. ;
Smolin, John A. ;
Gambetta, Jay M. .
NPJ QUANTUM INFORMATION, 2016, 2
[10]   Practical Characterization of Quantum Devices without Tomography [J].
da Silva, Marcus P. ;
Landon-Cardinal, Olivier ;
Poulin, David .
PHYSICAL REVIEW LETTERS, 2011, 107 (21)