THE NUMERICAL SOLUTION OF THE TIME-FRACTIONAL NON-LINEAR KLEIN-GORDON EQUATION VIA SPECTRAL COLLOCATION METHOD

被引:4
作者
Yang, Yin [1 ]
Yang, Xinfa [2 ]
Wang, Jindi [1 ]
Liu, Jie [3 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan, Hunan, Peoples R China
[2] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha, Hunan, Peoples R China
[3] Guangzhou Univ, Sch Mech & Elect Engn, Ctr Res Leading Technol Special Equipment, Guangzhou, Guangdong, Peoples R China
来源
THERMAL SCIENCE | 2019年 / 23卷 / 03期
关键词
caputo derivative; non-linear; time fractional Klein-Gordon equation; spectral collocation method; CONVERGENCE;
D O I
10.2298/TSCI180824220Y
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, we consider the numerical solution of the time fractional non-linear Klein-Gordon equation. We propose a spectral collocation method in both temporal and spatial discretizations with a spectral expansion of Jacobi interpolation polynomial for this equation. A rigorous error analysis is provided for the spectral methods to show both the errors of approximate solutions and the errors of approximate derivatives of the solutions decaying exponentially in infinity-norm and weighted L-2-norm. Numerical tests are carried out to confirm the theoretical results.
引用
收藏
页码:1529 / 1537
页数:9
相关论文
共 12 条
  • [1] [Anonymous], 1989, GEOMETRIC THEORY SEM
  • [2] Hariharan G, 2013, J COMPUT NONLIN DYN, V2, P1
  • [3] Hilfe R., 1999, APPL FRACTIONAL CALC
  • [4] Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey
    Mastroianni, G
    Occorsio, D
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 134 (1-2) : 325 - 341
  • [5] MEAN CONVERGENCE OF LAGRANGE INTERPOLATION .3.
    NEVAI, P
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) : 669 - 698
  • [6] Numerical simulation of time fractional Cable equations and convergence analysis
    Yang, Yin
    Huang, Yunqing
    Zhou, Yong
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1556 - 1576
  • [7] Spectral Collocation Methods for Nonlinear Volterra Integro-Differential Equations with Weakly Singular Kernels
    Yang, Yin
    Chen, Yanping
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (01) : 297 - 314
  • [8] Numerical solutions for solving time fractional Fokker-Planck equations based on spectral collocation methods
    Yang, Yin
    Huang, Yunqing
    Zhou, Yong
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 389 - 404
  • [9] Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis
    Yang, Yin
    Chen, Yanping
    Huang, Yunqing
    Wei, Huayi
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 1218 - 1232
  • [10] Jacobi spectral Galerkin methods for fractional integro-differential equations
    Yang, Yin
    [J]. CALCOLO, 2015, 52 (04) : 519 - 542