IDENTIFICATION OF THE RATE FUNCTION FOR LARGE DEVIATIONS OF AN IRREDUCIBLE MARKOV CHAIN

被引:2
作者
Liu, Wei [1 ]
Wu, Liming [2 ,3 ]
机构
[1] Wuhan Univ, Dept Math, Wuhan 430072, Peoples R China
[2] Univ Clermont Ferrand, CNRS, Lab Math Appl, UMR 6620, F-63177 Clermont Ferrand, France
[3] Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
关键词
Large deviations; irreducible Markov processes; Feynman-Kac semigroups; ASYMPTOTIC EVALUATION; PROCESS EXPECTATIONS; LARGE TIME; LOWER BOUNDS; ADDITIVE-FUNCTIONALS; LIMIT-THEOREMS;
D O I
10.1214/ECP.v14-1512
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For an irreducible Markov chain (X(n)) n >= 0 we identify the rate function governing the large deviation estimation of empirical mean 1/n Sigma(n-1)(k=0) f(X(k)) by means of the Donsker-Varadhan's entropy. That allows us to obtain the lower bound of large deviations for the empirical measure 1/n Sigma(n-1)(k=0) delta(Xk) in full generality.
引用
收藏
页码:540 / 551
页数:12
相关论文
共 26 条
[1]  
[Anonymous], 1984, CAMBRIDGE TRACTS MAT
[2]   SOME FAMILIAR EXAMPLES FOR WHICH THE LARGE DEVIATION PRINCIPLE DOES NOT HOLD [J].
BAXTER, JR ;
JAIN, NC ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (8-9) :911-923
[3]  
BOURBAKI N, 1955, ESPACES VECTORIELS T, pCH3
[4]  
Bryc W., 1993, J THEORET PROBAB, V6, P473, DOI [10.1007/BF01066713, DOI 10.1007/BF01066713.MR1230342]
[5]  
CONWAY JB, 1985, COURSE FUNCTIONAL AN
[6]  
de Acosta A, 1998, ANN PROBAB, V26, P1660
[7]   LARGE DEVIATIONS FOR VECTOR-VALUED FUNCTIONALS OF A MARKOV-CHAIN - LOWER BOUNDS [J].
DEACOSTA, A .
ANNALS OF PROBABILITY, 1988, 16 (03) :925-960
[8]  
Dembo A., 1998, LARGE DEVIATIONS TEC, V38
[9]  
Deuschel J.-D., 1989, PURE APPL MATH, V137
[10]   ASYMPTOTIC EVALUATION OF CERTAIN MARKOV PROCESS EXPECTATIONS FOR LARGE TIME, I [J].
DONSKER, MD ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (01) :1-47