Solutions for nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations

被引:31
作者
Barbu, Viorel [1 ]
Roeckner, Michael [2 ,3 ]
机构
[1] Romanian Acad, Octav Mayer Inst Math, Iasi, Romania
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
关键词
Fokker-Planck equation; m-accretive; Measure as initial data; McKean-Vlasov stochastic differential equation;
D O I
10.1016/j.jfa.2021.108926
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One proves the existence and uniqueness of a generalized (mild) solution for the nonlinear Fokker-Planck equation (FPE) u(t) - Delta(beta(u)) + div(D(x)b(u)u) = 0, t >= 0, x is an element of R-d, d not equal 2, u(0, .) = u(0), in R-d, where u(0) is an element of L-1 (R-d ), beta is an element of C-2 (R) is a nondecreasing function, b is an element of C-1, bounded, b >= 0, D is an element of L-infinity (R-d; R-d) with div D is an element of (L-2+L infinity)(R-d), and (div D)(-) is an element of L-infinity (R-d), beta strictly increasing, if b is not constant. Moreover, t -> u(t, u(0)) is a semigroup of contractions in L-1 (R-d), which leaves invariant the set of probability density functions in R-d. If div D >= 0, beta'(r) >= a vertical bar r vertical bar(alpha-)(1) and vertical bar beta(r)vertical bar <= Cr-alpha, alpha >= 1, d >= 3, then vertical bar u(t)vertical bar L-infinity <= Ct(-d/d+(alpha-1)d) vertical bar u(0)vertical bar(2/2+(m-1d)), t > 0, and if D is an element of L-2 (R-d;R-d) the existence extends to initial data u(0) in the space M-b of bounded measures in R-d. As a consequence for arbitrary initial laws, we obtain weak solutions to a class of McKean-Vlasov SDEs with coefficients which have singular dependence on the time marginal laws. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:35
相关论文
共 50 条
[31]   EXISTENCE OF OPTIMAL CONTROL FOR NONLINEAR FOKKER-PLANCK EQUATIONS IN L\bfone(RD).* [J].
Barbu, Viorel .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (03) :1213-1230
[32]   Convergence of an entropic semi-discretization for nonlinear Fokker-Planck equations in Rd [J].
Carrillo, J. A. ;
Gualdani, M. P. ;
Juengel, A. .
PUBLICACIONS MATEMATIQUES, 2008, 52 (02) :413-433
[33]   Qualitative properties of solutions to systems of Fokker-Planck equations for multilane traffic flow [J].
Herty, M. ;
Illner, R. ;
Klar, A. ;
Panferov, V. .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2006, 35 (1-2) :31-54
[34]   Exponential Convergence to Equilibrium for Kinetic Fokker-Planck Equations [J].
Calogero, Simone .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (08) :1357-1390
[35]   Numerical approach to Fokker-Planck equations for Brownian motors [J].
Kostur, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (09) :1157-1176
[36]   Numerical solution of two dimensional Fokker-Planck equations [J].
Zorzano, MP ;
Mais, H ;
Vazquez, L .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 98 (2-3) :109-117
[37]   The analytical analysis of fractional order Fokker-Planck equations [J].
Khan, Hassan ;
Farooq, Umar ;
Tchier, Fairouz ;
Khan, Qasim ;
Singh, Gurpreet ;
Kumam, Poom ;
Sitthithakerngkiet, Kanokwan .
AIMS MATHEMATICS, 2022, 7 (07) :11919-11941
[38]   Efficient Solution of Fokker-Planck Equations in Two Dimensions [J].
Mcfarland, Donald Michael ;
Ye, Fei ;
Zong, Chao ;
Zhu, Rui ;
Han, Tao ;
Fu, Hangyu ;
Bergman, Lawrence A. ;
Lu, Huancai .
MATHEMATICS, 2025, 13 (03)
[39]   Levy meets Boltzmann: strange initial conditions for Brownian and fractional Fokker-Planck equations [J].
Metzler, R ;
Klafter, J .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 302 (1-4) :290-296
[40]   Fokker–Planck equations with terminal condition and related McKean probabilistic representation [J].
Lucas Izydorczyk ;
Nadia Oudjane ;
Francesco Russo ;
Gianmario Tessitore .
Nonlinear Differential Equations and Applications NoDEA, 2022, 29