Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport

被引:44
作者
Cao, Yu [1 ]
Dong, Haifeng [1 ]
Pu, Shaotao [1 ]
Zhang, Xueji [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Chem & Biol Engn, Beijing Key Lab Bioengn & Sensing Technol, Res Ctr Bioengn & Sensing Technol, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
two-dimensional SiC; quantum dots; cellular imaging; intracellular microRNA (miRNA) detection; BAND-GAP; GRAPHENE; SILICON; NANOSHEETS; GROWTH; CARBON; MONO;
D O I
10.1007/s12274-018-1990-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional (2D) ultrathin SiC has received intense attention due to its broad band gap and resistance to large mechanical deformation and external chemical corrosion. However, the synthesis and application of ultrasmall 2D SiC quantum dots (QDs) has not been explored. Herein, we synthesize a type of monolayered 2D SiC QDs with advanced photoluminescence (PL) properties via a facile hydrothermal route. Their average size and thickness can be easily adjusted by altering the reaction time. The ultrasmall 2D SiC QDs exhibit a long fluorescence lifetime of 2.59 mu s due to efficient quantum confinement. The applications of SiC QDs are demonstrated through labeling A549, HeLa, and NHDF cells and delivering agents for intracellular low-abundant microRNA (miRNA) detection. This advance in preparing photoluminescent SiC QDs is of great significance for broadening their potential in biomedical and optical applications.
引用
收藏
页码:4074 / 4081
页数:8
相关论文
共 43 条
[1]   Properties of graphene: a theoretical perspective [J].
Abergel, D. S. L. ;
Apalkov, V. ;
Berashevich, J. ;
Ziegler, K. ;
Chakraborty, Tapash .
ADVANCES IN PHYSICS, 2010, 59 (04) :261-482
[2]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[3]   INSITU CHARACTERIZATION OF DIAMOND NUCLEATION AND GROWTH [J].
BELTON, DN ;
HARRIS, SJ ;
SCHMIEG, SJ ;
WEINER, AM ;
PERRY, TA .
APPLIED PHYSICS LETTERS, 1989, 54 (05) :416-418
[4]   From graphene to silicon carbide: ultrathin silicon carbide flakes [J].
Chabi, Sakineh ;
Chang, Hong ;
Xia, Yongde ;
Zhu, Yanqiu .
NANOTECHNOLOGY, 2016, 27 (07)
[5]   Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors [J].
Chen, Yen-Chia ;
de Oteyza, Dimas G. ;
Pedramrazi, Zahra ;
Chen, Chen ;
Fischer, Felix R. ;
Crommie, Michael F. .
ACS NANO, 2013, 7 (07) :6123-6128
[6]   Two-Dimensional Nanomaterials for Cancer Nanotheranostics [J].
Chen, Yongjiu ;
Wu, Yakun ;
Sun, Bingbing ;
Liu, Sijin ;
Liu, Huiyu .
SMALL, 2017, 13 (10)
[7]   Biocompatible 2D Titanium Carbide (MXenes) Composite Nanosheets for pH-Responsive MRI-Guided Tumor Hyperthermia [J].
Dai, Chen ;
Lin, Han ;
Xu, Guang ;
Liu, Zhuang ;
Wu, Rong ;
Chen, Yu .
CHEMISTRY OF MATERIALS, 2017, 29 (20) :8637-8652
[8]   Tunable Fabrication of Molybdenum Disulfide Quantum Dots for Intracellular MicroRNA Detection and Multiphoton Bioimaging [J].
Dai, Wenhao ;
Dong, Haifeng ;
Fugetsu, Bunshi ;
Cao, Yu ;
Lu, Huiting ;
Ma, Xinlei ;
Zhang, Xueji .
SMALL, 2015, 11 (33) :4158-4164
[9]   3C-SiC nanocrystals as fluorescent biological labels [J].
Fan, Jiyang ;
Li, Hongxia ;
Iiang, Jiang ;
So, Leo K. Y. ;
Lam, Yun Wah ;
Chu, Paul K. .
SMALL, 2008, 4 (08) :1058-1062
[10]   A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation [J].
Ge, Jiechao ;
Lan, Minhuan ;
Zhou, Bingjiang ;
Liu, Weimin ;
Guo, Liang ;
Wang, Hui ;
Jia, Qingyan ;
Niu, Guangle ;
Huang, Xing ;
Zhou, Hangyue ;
Meng, Xiangmin ;
Wang, Pengfei ;
Lee, Chun-Sing ;
Zhang, Wenjun ;
Han, Xiaodong .
NATURE COMMUNICATIONS, 2014, 5