The Erdos-Heilbronn problem for finite groups

被引:3
作者
Balister, Paul [1 ]
Wheeler, Jeffrey Paul [2 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
Cauchy-Davenport theorem; Erdos-Heilbronn problem; additive number theory; sumsets; polynomial method; solvable groups; finite groups; CONGRUENCE CLASSES; POLYNOMIAL METHOD; ADDITIVE THEORY;
D O I
10.4064/aa140-2-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:105 / 118
页数:14
相关论文
共 20 条
  • [1] ADDING DISTINCT CONGRUENCE CLASSES MODULO-A-PRIME
    ALON, N
    NATHANSON, MB
    RUZSA, I
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (03) : 250 - 255
  • [2] The polynomial method and restricted sums of congruence classes
    Alon, N
    Nathanson, MB
    Ruzsa, I
    [J]. JOURNAL OF NUMBER THEORY, 1996, 56 (02) : 404 - 417
  • [3] [Anonymous], 1996, INVERSE PROBLEMS GEO
  • [4] [Anonymous], 1980, Monogr. Enseign. Math. L'Enseignement Mathematique
  • [5] [Anonymous], ELECT J COMBIN
  • [6] BALISTER P, 2006, CAUCHYDAVENPORT THEO
  • [7] CAUCHY A, 1813, J ECOLE POLYTECHNIQU, V9, P99
  • [8] Chowla Inder., 1935, Proceedings of the Indian Academy of Sciences, Section A, V1, P242
  • [9] CYCLIC SPACES FOR GRASSMANN DERIVATIVES AND ADDITIVE THEORY
    DASILVA, JAD
    HAMIDOUNE, YO
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 : 140 - 146
  • [10] Davenport H., 1947, J. London Math. Soc., Vs1-22, P100, DOI DOI 10.1112/JLMS/S1-22.2.100