Towards Multiparametric Fluorescent Imaging of Amyloid Formation: Studies of a YFP Model of α-Synuclein Aggregation

被引:62
作者
van Ham, Tjakko J. [3 ]
Esposito, Alessandro [2 ]
Kumita, Janet R. [1 ]
Hsu, Shang-Te D. [1 ]
Schierle, Gabriele S. Kaminski [2 ]
Kaminsk, Clemens F. [2 ]
Dobson, Christopher M. [1 ]
Nollen, Ellen A. A. [3 ]
Bertoncini, Carlos W. [1 ]
机构
[1] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[2] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB2 1EW, England
[3] Univ Groningen, Dept Genet, Groningen, Netherlands
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
protein misfolding; protein aggregation; fluorescence anisotropy imaging microscopy; Parkinson's disease; fluorescence protein; PARKINSONS-DISEASE; LIVING CELLS; BETA-SYNUCLEIN; MOLECULAR-INTERACTIONS; PROTEIN AGGREGATION; CONTACT DYNAMICS; NMR-SPECTROSCOPY; FIBRIL FORMATION; FRET MICROSCOPY; LEWY BODIES;
D O I
10.1016/j.jmb.2009.10.066
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Misfolding and aggregation of proteins are characteristics of a range of increasingly prevalent neurodegenerative disorders including Alzheimer's and Parkinson's diseases. In Parkinson's disease and several closely related syndromes, the protein a-synuclein (AS) aggregates and forms amyloid-like deposits in specific regions of the brain. Fluorescence microscopy using fluorescent proteins, for instance the yellow fluorescent protein (YFP), is the method of choice to image molecular events such as protein aggregation in living organisms. The presence of a bulky fluorescent protein tag, however, may potentially affect significantly the properties of the protein of interest, for AS in particular, its relative small size and, as an intrinsically unfolded protein, its lack of defined secondary structure could challenge the usefulness of fluorescent-protein-based derivatives. Here, we subject a YFP fusion of AS to exhaustive studies in vitro designed to determine its potential as a means of probing amyloid formation in vivo. By employing a combination of biophysical and biochemical studies, we demonstrate that the conjugation of YFP does not significantly perturb the structure of AS in solution and find that the AS-YFP protein forms amyloid deposits in vitro that are essentially identical with those observed for wild-type AS, except that they are fluorescent. Of the several fluorescent properties of the YFP chimera that were assayed, we find that fluorescence anisotropy is a particularly useful parameter to follow the aggregation of AS-YFP, because of energy migration Forster resonance energy transfer (emFRET or homoFRET) between closely positioned YFP moieties occurring as a result of the high density of the fluorophore within the amyloid species. Fluorescence anisotropy imaging microscopy further demonstrates the ability of homoFRET to distinguish between soluble, pre-fibrillar aggregates and amyloid fibrils of AS-YFP. Our results validate the use of fluorescent protein chimeras of AS as representative models for studying protein aggregation and offer new opportunities for the investigation of amyloid aggregation in vivo using YFP-tagged proteins. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:627 / 642
页数:16
相关论文
共 71 条
[1]   Release of long-range tertiary interactions potentiates aggregation of natively unstructured α-synuclein [J].
Bertoncini, CW ;
Jung, YS ;
Fernandez, CO ;
Hoyer, W ;
Griesinger, C ;
Jovin, TM ;
Zweckstetter, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (05) :1430-1435
[2]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[3]   Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer [J].
Blackman, SM ;
Piston, DW ;
Beth, AH .
BIOPHYSICAL JOURNAL, 1998, 75 (02) :1117-1130
[4]   Multiple Tight Phospholipid-Binding Modes of α-Synuclein Revealed by Solution NMR Spectroscopy [J].
Bodner, Christina R. ;
Dobson, Christopher M. ;
Bax, Ad .
JOURNAL OF MOLECULAR BIOLOGY, 2009, 390 (04) :775-790
[5]   Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases [J].
Bucciantini, M ;
Giannoni, E ;
Chiti, F ;
Baroni, F ;
Formigli, L ;
Zurdo, JS ;
Taddei, N ;
Ramponi, G ;
Dobson, CM ;
Stefani, M .
NATURE, 2002, 416 (6880) :507-511
[6]  
Cabin DE, 2002, J NEUROSCI, V22, P8797
[7]   α-synuclein cooperates with CSPα in preventing neurodegeneration [J].
Chandra, S ;
Gallardo, G ;
Fernández-Chacón, R ;
Schlüter, OM ;
Südhof, TC .
CELL, 2005, 123 (03) :383-396
[8]   α-synuclein locus duplication as a cause of familial Parkinson's disease [J].
Chartier-Harlin, MC ;
Kachergus, J ;
Roumier, C ;
Mouroux, V ;
Douay, X ;
Lincoln, S ;
Levecque, C ;
Larvor, L ;
Andrieux, J ;
Hulihan, M ;
Waucquier, N ;
Defebvre, L ;
Amouyel, P ;
Farrer, M ;
Destée, A .
LANCET, 2004, 364 (9440) :1167-1169
[9]   Investigation of α-synuclein fibril structure by site-directed spin labeling [J].
Chen, Min ;
Margittai, Martin ;
Chen, Jeannie ;
Langen, Ralf .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (34) :24970-24979
[10]   α-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models [J].
Cooper, Antony A. ;
Gitler, Aaron D. ;
Cashikar, Anil ;
Haynes, Cole M. ;
Hill, Kathryn J. ;
Bhullar, Bhupinder ;
Liu, Kangning ;
Xu, Kexiang ;
Strathearn, Katherine E. ;
Liu, Fang ;
Cao, Songsong ;
Caldwell, Kim A. ;
Caldwell, Guy A. ;
Marsischky, Gerald ;
Kolodner, Richard D. ;
LaBaer, Joshua ;
Rochet, Jean-Christophe ;
Bonini, Nancy M. ;
Lindquist, Susan .
SCIENCE, 2006, 313 (5785) :324-328