First principles study of vacancy and tungsten diffusion in fcc cobalt

被引:15
作者
LaBrosse, Matthew R. [1 ,2 ]
Chen, Liang [3 ]
Johnson, J. Karl [1 ,2 ]
机构
[1] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA
[2] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA
[3] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; ULTRASOFT PSEUDOPOTENTIALS; MEDIATED DIFFUSION; SELF-DIFFUSION; MICROWAVE; CO; TRANSITION; METALS; 1ST-PRINCIPLES;
D O I
10.1088/0965-0393/18/1/015008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have studied the energetics of vacancy formation and diffusion in fcc cobalt using periodic density functional theory, both with and without including the surface intrinsic error corrections. Aggregation of vacancies is found to be energetically favorable. The vacancy formation energies, with (without) corrections, are computed to be 2.34 (1.71) eV for an isolated vacancy and 2.28-1.92 (1.65-1.29) eV per vacancy for two to six coalesced vacancies, respectively. The corrected (uncorrected) diffusion barrier of an isolated vacancy is 1.19 (0.98) eV. We have found that vacancy formation energies are over-predicted for Co, Fe and Ni when surface intrinsic error corrections are applied. We have also studied substitutional tungsten diffusion in Co. We have identified two sequential vacancy-mediated W diffusion mechanisms in Co. Corrected (uncorrected) energy barriers for the steps in these mechanisms lie in the range 1.09-1.44 (0.88-1.23) eV.
引用
收藏
页数:10
相关论文
共 49 条
[1]   Microwave processing of ceramics [J].
Agrawal, DK .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1998, 3 (05) :480-485
[2]  
[Anonymous], 1998, CLASSICAL QUANTUM DY
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Comparison between microwave and conventional sintering of WC/Co composites [J].
Breval, E ;
Cheng, JP ;
Agrawal, DK ;
Gigl, P ;
Dennis, A ;
Roy, R ;
Papworth, AJ .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 391 (1-2) :285-295
[5]   VACANCY-FORMATION ENTROPY IN CUBIC METALS [J].
BURTON, JJ .
PHYSICAL REVIEW B-SOLID STATE, 1972, 5 (08) :2948-+
[6]   ISOTOPE EFFECT AND SELF-DIFFUSION IN FACE-CENTERED CUBIC COBALT [J].
BUSSMANN, W ;
HERZIG, C ;
REMPP, W ;
MAIER, K ;
MEHRER, H .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1979, 56 (01) :87-97
[7]   Vacancies in metals:: From first-principles calculations to experimental data [J].
Carling, K ;
Wahnström, G ;
Mattsson, TR ;
Mattsson, AE ;
Sandberg, N ;
Grimvall, G .
PHYSICAL REVIEW LETTERS, 2000, 85 (18) :3862-3865
[8]   Microwave processing of WC-Co composites and ferroic titanates [J].
Cheng, JP ;
Agrawal, DK ;
Komarneni, S ;
Mathis, M ;
Roy, R .
MATERIALS RESEARCH INNOVATIONS, 1997, 1 (01) :44-52
[9]   Vacancy-mediated dopant diffusion activation enthalpies for germanium [J].
Chroneos, A. ;
Bracht, H. ;
Grimes, R. W. ;
Uberuaga, B. P. .
APPLIED PHYSICS LETTERS, 2008, 92 (17)
[10]   DETERMINATION OF THE FERROMAGNETIC VACANCY-FORMATION ENTHALPY IN ALPHA-IRON BY THE POSITRON METHOD USING THE CARBON VACANCY PAIR AS A PROBE [J].
DESCHEPPER, L ;
SEGERS, D ;
KNUYT, G ;
DORIKENSVANPRAET, L ;
DORIKENS, M ;
STALS, L ;
MOSER, P .
PHYSICS LETTERS A, 1983, 95 (02) :121-123