Modeling of Molten Corium Oxidation in the Presence of an Oxide Crust on the Melt Surface

被引:0
作者
Khabensky, V. B. [1 ]
Almjashev, V., I [1 ,2 ]
Granovsky, V. S. [1 ]
Krushinov, E., V [1 ]
Vitol, S. A. [1 ]
Kotova, S. Yu [1 ]
Gusarov, V. V. [3 ]
机构
[1] Aleksandrov Res Inst Technol, Sosnovyi Bor 188540, Leningrad Oblas, Russia
[2] Ulyanov Lenin St Petersburg State Electrotech Uni, St Petersburg 197376, Russia
[3] Ioffe Inst, St Petersburg 194021, Russia
关键词
D O I
10.1134/S1063784221020146
中图分类号
O59 [应用物理学];
学科分类号
摘要
In the case of a severe accident at a nuclear power plant with light-water reactors, the most effective method for localization of the formed melt (corium) is its retention in the cooled reactor vessel whose integrity depends on the heat flux from the melt to the vessel. One of the critically important processes in this case is the oxidation of the melt by water vapor or air-vapor mixture, which may significantly increase the heat load on the reactor vessel due to the heat of exothermal reactions of oxidation of reducing agents present in the melt, the decrease in the thickness of the metallic part of the molten pool, and the release of hydrogen, which depend on the oxidation rate. In analysis of the melt oxidation conditions, it is considered that for the generally accepted scenarios of a severe accident, the most realistic situation is the presence of the solid-phase oxide layer (oxide crust) on the melt surface. In these conditions, based on the diffusion model, we propose a dependence for calculating the oxidation rate for the corium melt and its validation using the obtained experimental data.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 37 条
[1]   Experimental study of transient phenomena in the three-liquid oxidic-metallic corium pool [J].
Almjashev, V. I. ;
Granovsky, V. S. ;
Khabensky, V. B. ;
Kotova, S. Yu. ;
Krushinov, E. V. ;
Sulatsky, A. A. ;
Vitol, S. A. ;
Gusarov, V. V. ;
Fichot, F. ;
Michel, B. ;
Piluso, P. ;
Le Tellier, R. ;
Fischer, M. ;
Le Guennic, C. ;
Bakouta, N. .
NUCLEAR ENGINEERING AND DESIGN, 2018, 332 :31-37
[2]   Oxidation effects during corium melt in-vessel retention [J].
Almyashev, V. I. ;
Granovsky, V. S. ;
Khabensky, V. B. ;
Krushinov, E. V. ;
Sulatsky, A. A. ;
Vitol, S. A. ;
Gusarov, V. V. ;
Bechta, S. ;
Barrachin, M. ;
Fichot, F. ;
Bottomley, P. D. ;
Fischer, M. ;
Piluso, P. .
NUCLEAR ENGINEERING AND DESIGN, 2016, 305 :389-399
[3]  
Andrushechko S A, 2010, NUCL POWER PLANT REA
[4]  
[Anonymous], 2015, INSAG 12 STIPUB1082
[5]  
Asmolov V. G., 2017, Nuclear Energy and Technology, V3, P260, DOI 10.1016/j.nucet.2017.10.003
[6]  
Asmolov V.G., 2018, RASPLAV RETENTION MO
[7]   Corrosion of vessel steel during its interaction with molten corium Part 2: Model development [J].
Bechta, S. V. ;
Khabensky, V. B. ;
Vitol, S. A. ;
Krushinov, E. V. ;
Granovsky, V. S. ;
Lopukh, D. B. ;
Gusarov, V. V. ;
Martinov, A. P. ;
Martinov, V. V. ;
Fieg, G. ;
Tromm, W. ;
Bottomley, D. ;
Tuomisto, H. .
NUCLEAR ENGINEERING AND DESIGN, 2006, 236 (13) :1362-1370
[8]   Influence of corium oxidation on fission product release from molten pool [J].
Bechta, S. V. ;
Krushinov, E. V. ;
Vitol, S. A. ;
Khabensky, V. B. ;
Kotova, S. Yu. ;
Sulatsky, A. A. ;
Gusarov, V. V. ;
Almyashev, V. I. ;
Ducros, G. ;
Journeau, C. ;
Bottomley, D. ;
Clement, B. ;
Herranz, L. ;
Guentay, S. ;
Trambauer, K. ;
Auvinen, A. ;
Bezlepkin, V. V. .
NUCLEAR ENGINEERING AND DESIGN, 2010, 240 (05) :1229-1241
[9]  
Bechta S.V., 2008, PAPER 27
[10]   Main outcomes from the IVR code benchmark performed in the European IVMR project [J].
Carenini, L. ;
Fichot, F. ;
Bakouta, N. ;
Filippov, A. ;
Le Tellier, R. ;
Viot, L. ;
Melnikov, I ;
Pandazis, P. .
ANNALS OF NUCLEAR ENERGY, 2020, 146