Machine Learning to Predict the Risk of Incident Heart Failure Hospitalization Among Patients With Diabetes: The WATCH-DM Risk Score

被引:178
作者
Segar, Matthew W. [1 ]
Vaduganathan, Muthiah [2 ]
Patel, Kershaw V. [1 ]
McGuire, Darren K. [1 ]
Butler, Javed [3 ]
Fonarow, Gregg C. [4 ]
Basit, Mujeeb [1 ]
Kannan, Vaishnavi [5 ]
Grodin, Justin L. [1 ]
Everett, Brendan [2 ]
Willett, Duwayne [1 ]
Berry, Jarett [1 ]
Pandey, Ambarish [1 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Dept Internal Med, Div Cardiol, Dallas, TX 75390 USA
[2] Harvard Med Sch, Brigham & Womens Hosp, Heart & Vasc Ctr, Dept Med, Boston, MA 02115 USA
[3] Univ Mississippi, Med Ctr, Dept Med, Jackson, MS 39216 USA
[4] Ronald Reagan UCLA Med Ctr, Ahmanson UCLA Cardiomyopathy Ctr, Div Cardiol, Los Angeles, CA USA
[5] Univ Texas Southwestern Med Ctr Dallas, Dept Hlth Syst Informat Resources, Clin Informat, Dallas, TX 75390 USA
基金
美国国家卫生研究院;
关键词
LIPID-LOWERING TREATMENT; CARDIOVASCULAR OUTCOMES; MORTALITY; TRIAL; EMPAGLIFLOZIN;
D O I
10.2337/dc19-0587
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
OBJECTIVE To develop and validate a novel, machine learning-derived model to predict the risk of heart failure (HF) among patients with type 2 diabetes mellitus (T2DM). RESEARCH DESIGN AND METHODS Using data from 8,756 patients free at baseline of HF, with <10% missing data, and enrolled in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, we used random survival forest (RSF) methods, a nonparametric decision tree machine learning approach, to identify predictors of incident HF. The RSF model was externally validated in a cohort of individuals with T2DM using the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). RESULTS Over a median follow-up of 4.9 years, 319 patients (3.6%) developed incident HF. The RSF models demonstrated better discrimination than the best performing Cox-based method (C-index 0.77 [95% CI 0.75-0.80] vs. 0.73 [0.70-0.76] respectively) and had acceptable calibration (Hosmer-Lemeshow statistic chi(2) = 9.63, P = 0.29) in the internal validation data set. From the identified predictors, an integer-based risk score for 5-year HF incidence was created: the WATCH-DM (Weight [BMI], Age, hyperTension, Creatinine, HDL-C, Diabetes control [fasting plasma glucose], QRS Duration, MI, and CABG) risk score. Each 1-unit increment in the risk score was associated with a 24% higher relative risk of HF within 5 years. The cumulative 5-year incidence of HF increased in a graded fashion from 1.1% in quintile 1 (WATCH-DM score <= 7) to 17.4% in quintile 5 (WATCH-DM score >= 14). In the external validation cohort, the RSF-based risk prediction model and the WATCH-DM risk score performed well with good discrimination (C-index = 0.74 and 0.70, respectively), acceptable calibration (P >= 0.20 for both), and broad risk stratification (5-year HF risk range from 2.5 to 18.7% across quintiles 1-5). CONCLUSIONS We developed and validated a novel, machine learning-derived risk score that integrates readily available clinical, laboratory, and electrocardiographic variables to predict the risk of HF among outpatients with T2DM.
引用
收藏
页码:2298 / 2306
页数:9
相关论文
共 36 条
[2]  
[Anonymous], 2018, RANDOMFORESTSRC RAND
[3]   Developing points-based risk-scoring systems in the presence of competing risks [J].
Austin, Peter C. ;
Lee, Douglas S. ;
D'Agostino, Ralph B. ;
Fine, Jason P. .
STATISTICS IN MEDICINE, 2016, 35 (22) :4056-4072
[4]   Action to control cardiovascular risk in diabetes (ACCORD) trial: Design and methods [J].
Buse, John B. .
AMERICAN JOURNAL OF CARDIOLOGY, 2007, 99 (12A) :21I-33I
[5]   Effects of Intensive Blood-Pressure Control in Type 2 Diabetes Mellitus [J].
Cushman, William C. ;
Evans, Gregory W. ;
Byington, Robert P. ;
Goff, David C., Jr. ;
Grimm, Richard H., Jr. ;
Cutler, Jeffrey A. ;
Simons-Morton, Denise G. ;
Basile, Jan N. ;
Corson, Marshall A. ;
Probstfield, Jeffrey L. ;
Katz, Lois ;
Peterson, Kevin A. ;
Friedewald, William T. ;
Buse, John B. ;
Bigger, J. Thomas ;
Gerstein, Hertzel C. ;
Ismail-Beigi, Faramarz .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 362 (17) :1575-1585
[6]   2018 ACC Expert Consensus Decision Pathway on Novel Therapies for Cardiovascular Risk Reduction in Patients With Type 2 Diabetes and Atherosclerotic Cardiovascular Disease [J].
Das, Sandeep R. ;
Everett, Brendan M. ;
Birtcher, Kim K. ;
Brown, Jenifer M. ;
Cefalu, William T. ;
Januzzi, James L., Jr. ;
Kalyani, Rita Rastogi ;
Kosiborod, Mikhail ;
Magwire, Melissa L. ;
Morris, Pamela B. ;
Sperling, Laurence S. ;
Ahmad, Tariq ;
Hucker, William ;
Kumbhani, Dharam J. ;
Marine, Joseph E. ;
Piana, Robert N. ;
Rao, Sunil V. ;
Scherrer-Crosbie, Marielle ;
Watson, Karol E. ;
Wiggins, Barbara S. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 72 (24) :3200-3223
[7]  
Davies MJ, 2018, DIABETES CARE, V41, P2669, DOI [10.2337/dci18-0033, 10.1007/s00125-018-4729-5]
[8]   Heart Failure With Preserved and Reduced Left Ventricular Ejection Fraction in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial [J].
Davis, Barry R. ;
Kostis, John B. ;
Simpson, Lara M. ;
Black, Henry R. ;
Cushman, William C. ;
Einhorn, Paula T. ;
Farber, Michael A. ;
Ford, Charles E. ;
Levy, Daniel ;
Massie, Barry M. ;
Nawaz, Shah .
CIRCULATION, 2008, 118 (22) :2259-2267
[9]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[10]   The antihypertensive and lipid lowering treatment to prevent heart attack trial (ALLHAT) Heart Failure Validation Study: Diagnosis and prognosis [J].
Einhorn, Paula T. ;
Davis, Barry R. ;
Massie, Barry M. ;
Cushman, William C. ;
Piller, Linda B. ;
Simpson, Lara M. ;
Levy, Daniel ;
Nwachuku, Chuke E. ;
Black, Henry R. .
AMERICAN HEART JOURNAL, 2007, 153 (01) :42-+