Clarifying the controversial catalytic active sites of Co3O4 for the oxygen evolution reaction

被引:131
|
作者
Xu, Yong [1 ,2 ]
Zhang, Fengchu [3 ]
Sheng, Tian [4 ]
Ye, Tao [3 ]
Yi, Ding [3 ]
Yang, Yijun [3 ]
Liu, Shoujie [5 ]
Wang, Xi [3 ]
Yao, Jiannian [1 ,2 ,5 ,6 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Inst Mol Plus, Tianjin 300072, Peoples R China
[3] Beijing Jiaotong Univ, Sch Sci, Dept Phys, Minist Educ,Key Lab Luminescence & Opt Informat, Beijing 100044, Peoples R China
[4] Anhui Normal Univ, Coll Chem & Mat Sci, Wuhu 241000, Peoples R China
[5] Chem & Chem Engn Guangdong Lab, Shantou 515031, Peoples R China
[6] Chinese Acad Sci, Inst Chem, Key Lab Photochem, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; DEPENDENT ACTIVITY; DOUBLE HYDROXIDE; SPINEL CO3O4; WATER; REDUCTION; COBALT; OXIDE; ELECTROCATALYST; ULTRATHIN;
D O I
10.1039/c9ta08379k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Insights into the real catalytic active site(s) of promising oxygen evolution reaction (OER) catalysts is significant for the further development of high-performance catalysts. Spinel cobalt oxide (Co3O4), with both tetrahedral (Co2+) and octahedral (Co3+) sites, has been widely studied as an efficient non-precious OER catalyst. However, controversial results still exist regarding its OER performance in determining the active sites from two different tetrahedral and octahedral sites. Here, we have designed size-controllable Co3O4 hexagonal platelets with (111) exposed surfaces only containing tetrahedral Co2+ sites as model catalysts, and systematically investigated the catalytic properties of the tetrahedral sites on the surface of the (111) plane and the octahedral sites on the surface of the (110)-B plane for the OER using density functional theory (DFT) and various characterization methods. The theoretical and experimental results further reveal that the high catalytic activity is based on the existence of octahedral sites in Co3O4, meaning that the octahedral sites are responsible for the OER reaction and have been identified as the dominant active sites of spinel Co3O4.
引用
收藏
页码:23191 / 23198
页数:8
相关论文
共 50 条
  • [1] Clarifying the Controversial Catalytic Performance of Co(OH)2 and Co3O4 for Oxygen Reduction/Evolution Reactions toward Efficient Zn-Air Batteries
    Song, Zhishuang
    Han, Xiaopeng
    Deng, Yida
    Zhao, Naiqin
    Hu, Wenbin
    Zhong, Cheng
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (27) : 22694 - 22703
  • [2] CuO/Co3O4 heterojunctions for catalytic nitroarenes reduction and oxygen evolution reaction
    Arathi, K.
    Nagashree, K. L.
    Rao, Madhuri P.
    Raj, Kalyan
    Shivakumar, P.
    Nagaraju, D. H.
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 169
  • [3] Probing the active sites of Co3O4 for the acidic oxygen evolution reaction by modulating the Co2+/Co3+ ratio
    Yan, Kai-Li
    Qin, Jun-Feng
    Lin, Jia-Hui
    Dong, Bin
    Chi, Jing-Qi
    Liu, Zi-Zhang
    Dai, Fang-Na
    Chai, Yong-Ming
    Liu, Chen-Guang
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (14) : 5678 - 5686
  • [4] Ultrathin Co3O4 Nanomeshes for the Oxygen Evolution Reaction
    Li, Ying
    Li, Fu-Min
    Meng, Xin-Ying
    Li, Shu-Ni
    Zeng, Jing-Hui
    Chen, Yu
    ACS CATALYSIS, 2018, 8 (03): : 1913 - 1920
  • [5] Rational construction of high-active Co3O4 electrocatalysts for oxygen evolution reaction
    Tianyun Zhang
    Shichao Zhao
    Chuanming Zhu
    Jing Shi
    Chao Su
    Jiawen Yang
    Meng Wang
    Jun Li
    Junhui Li
    Pingle Liu
    Conghui Wang
    Nano Research, 2023, 16 : 624 - 633
  • [6] Rational construction ohigh-active Co3O4 electrocatalysts for oxygen evolution reaction
    Zhang, Tianyun
    Zhao, Shichao
    Zhu, Chuanming
    Shi, Jing
    Su, Chao
    Yang, Jiawen
    Wang, Meng
    Li, Jun
    Li, Junhui
    Liu, Pingle
    Wang, Conghui
    NANO RESEARCH, 2023, 16 (01) : 624 - 633
  • [7] Unraveling the Catalytic Mechanism of Co3O4 for the Oxygen Evolution Reaction in a Li-O2 Battery
    Zhu, Jinzhen
    Ren, Xiaodong
    Liu, Jianjun
    Zhang, Wenqing
    Wen, Zhaoyin
    ACS CATALYSIS, 2015, 5 (01): : 73 - 81
  • [8] Single Particle Nanoelectrochemistry Reveals the Catalytic Oxygen Evolution Reaction Activity of Co3O4 Nanocubes
    Quast, Thomas
    Varhade, Swapnil
    Saddeler, Sascha
    Chen, Yen-Ting
    Andronescu, Corina
    Schulz, Stephan
    Schuhmann, Wolfgang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (43) : 23444 - 23450
  • [9] NATURE OF THE ACTIVE OXYGEN OF CO3O4
    RAZDOBAROV, VA
    SADYKOV, VA
    VENIAMINOV, SA
    BULGAKOV, NN
    KOVALENKO, ON
    PANKRATIEV, YD
    POPOVSKII, VV
    KRYUKOVA, GN
    TIKHOV, SF
    REACTION KINETICS AND CATALYSIS LETTERS, 1988, 37 (01): : 109 - 114
  • [10] Phase evolution of vulcanized Co3O4 catalysts during oxygen evolution reaction
    Zhang, Rongxian
    Ke, Wentao
    Chen, Shiqing
    Yue, Xiaoyang
    Hu, Zhichen
    Ning, Tianya
    APPLIED SURFACE SCIENCE, 2021, 546 (546)