Predictive Model for Selection of Upper Treated Vertebra Using a Machine Learning Approach

被引:14
作者
Lafage, Renaud [1 ]
Ang, Bryan [1 ]
Alshabab, Basel Sheikh [1 ]
Elysee, Jonathan [1 ]
Lovecchio, Francis C. [1 ]
Weissmann, Karen [1 ]
Kim, Han Jo [1 ]
Schwab, Frank J. [1 ]
Lafage, Virginie [1 ]
机构
[1] Hosp Special Surg, Dept Spine Surg, 535 E 70th St, New York, NY 10021 USA
关键词
Deep learning; Lumbar; Thoracolumbar; Treatment outcome;
D O I
10.1016/j.wneu.2020.10.073
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
OBJECTIVE: To train and validate an algorithm mimicking decision making of experienced surgeons regarding upper instrumented vertebra (UIV) selection in surgical correction of thoracolumbar adult spinal deformity. METHODS: A retrospective review was conducted of patients with adult spinal deformity who underwent fusion of at least the lumbar spine (UIV > L1 to pelvis) during 2013-2018. Demographic and radiographic data were collected. The sample was stratified into 3 groups: training (70%), validation (15%) and performance testing (15%). Using a deep learning algorithm, a neural network model was trained to select between upper thoracic (T1-T6) and lower thoracic (T7-T12) UIV. Parameters used in the deep learning algorithm included demographics, coronal and sagittal preoperative alignment, and postoperative pelvic incidenceelumbar lordosis mismatch. RESULTS: The study included 143 patients (mean age 63.3 +/- 10.6 years, 81.8% women) with moderate to severe deformity (maximum Cobb angle: 43 degrees +/- 22 degrees; T1 pelvic angle: 27 degrees +/- 14 degrees; pelvic incidenceelumbar lordosis mismatch: 22 degrees +/- 21 degrees). Patients underwent a significant change in lumbar alignment (Dpelvic incidenceelumbar lordosis mismatch: 21 degrees +/- 16 degrees, P < 0.001); 35.0% had UIV in the upper thoracic region, and 65.0% had UIV in the lower thoracic region. At 1 year, revision rate was 11.9%, and rate of radiographic proximal junctional kyphosis was 29.4%. Neural network comprised 8 inputs, 10 hidden neurons, and 1 output (upper thoracic or lower thoracic). After training, results demonstrated an accuracy of 81.0%, precision of 87.5%, and recall of 87.5% on testing. CONCLUSIONS: An artificial neural network successfully mimicked 2 lead surgeons' decision making in the selection of UIV for adult spinal deformity correction. Future models integrating surgical outcomes should be developed.
引用
收藏
页码:E225 / E232
页数:8
相关论文
共 40 条
[11]   Proximal junctional kyphosis and clinical outcomes in adult spinal deformity surgery with fusion from the thoracic spine to the sacrum: a comparison of proximal and distal upper instrumented vertebrae [J].
Ha, Yoon ;
Maruo, Keishi ;
Racine, Linda ;
Schairer, William W. ;
Hu, Serena S. ;
Deviren, Vedat ;
Burch, Shane ;
Tay, Bobby ;
Chou, Dean ;
Mummaneni, Praveen V. ;
Ames, Christopher P. ;
Berven, Sigurd H. .
JOURNAL OF NEUROSURGERY-SPINE, 2013, 19 (03) :360-369
[12]   T9 versus T10 as the upper instrumented vertebra for correction of adult deformity-rationale and recommendations [J].
Hey, Hwee Weng Dennis ;
Tan, Kimberly-Anne ;
Neo, Christabel Shao-En ;
Lau, Eugene Tze-Chun ;
Choong, Denise Ai-Wen ;
Lau, Leok-Lim ;
Liu, Gabriel Ka-Po ;
Wong, Hee-Kit .
SPINE JOURNAL, 2017, 17 (05) :615-621
[13]   Incidence, Mode, and Location of Acute Proximal Junctional Failures After Surgical Treatment of Adult Spinal Deformity [J].
Hostin, Richard ;
McCarthy, Ian ;
O'Brien, Michael ;
Bess, Shay ;
Line, Breton ;
Boachie-Adjei, Oheneba ;
Burton, Doug ;
Gupta, Munish ;
Ames, Christopher ;
Deviren, Vedat ;
Kebaish, Khaled ;
Shaffrey, Christopher ;
Wood, Kirkham ;
Hart, Robert .
SPINE, 2013, 38 (12) :1008-1015
[14]   Adult Spinal Deformity Over 70 Years of Age: A 2-Year Follow-Up Study [J].
Karabulut, Cem ;
Ayhan, Selim ;
Yuksel, Selcen ;
Nabiyev, Vugar ;
Vila-Casademunt, Alba ;
Pellise, Ferran ;
Alanay, Ahmet ;
Sanchez Perez-Grueso, Francisco Javier ;
Kleinstuck, Frank ;
Obeid, Ibrahim ;
Acaroglu, Emre .
INTERNATIONAL JOURNAL OF SPINE SURGERY, 2019, 13 (04) :336-344
[15]   Upper Thoracic Versus Lower Thoracic Upper Instrumented Vertebrae Endpoints Have Similar Outcomes and Complications in Adult Scoliosis [J].
Kim, Han Jo ;
Boachie-Adjei, Oheneba ;
Shaffrey, Christopher I. ;
Schwab, Frank ;
Lafage, Virginie ;
Bess, Shay ;
Gupta, Munish C. ;
Smith, Justin S. ;
Deviren, Vedat ;
Akbarnia, Behrooz ;
Mundis, Greg M. ;
O'Brien, Michael ;
Hostin, Richard ;
Ames, Christopher .
SPINE, 2014, 39 (13) :E795-E799
[16]   Proximal Junctional Kyphosis Results in Inferior SRS Pain Subscores in Adult Deformity Patients [J].
Kim, Han Jo ;
Bridwell, Keith H. ;
Lenke, Lawrence G. ;
Park, Moon Soo ;
Ahmad, Azeem ;
Song, Kwang-Sup ;
Piyaskulkaew, Chaiwat ;
Hershman, Stuart ;
Fogelson, Jeremy ;
Mesfin, Addisu .
SPINE, 2013, 38 (11) :896-901
[17]   Proximal Junctional Kyphosis as a Distinct Form of Adjacent Segment Pathology After Spinal Deformity Surgery A Systematic Review [J].
Kim, Han Jo ;
Lenke, Lawrence G. ;
Shaffrey, Christopher I. ;
Van Alstyne, Ellen M. ;
Skelly, Andrea C. .
SPINE, 2012, 37 (22) :S144-S164
[18]   Examining the Ability of Artificial Neural Networks Machine Learning Models to Accurately Predict Complications Following Posterior Lumbar Spine Fusion [J].
Kim, Jun S. ;
Merrill, Robert K. ;
Arvind, Varun ;
Kaji, Deepak ;
Pasik, Sara D. ;
Nwachukwu, Chuma C. ;
Vargas, Luilly ;
Osman, Nebiyu S. ;
Oermann, Eric K. ;
Caridi, John M. ;
Cho, Samuel K. .
SPINE, 2018, 43 (12) :853-860
[19]   Proximal junctional kyphosis in adult spinal deformity after segmental posterior spinal instrumentation and fusion - Minimum five-year follow-up [J].
Kim, Yongjung J. ;
Bridwell, Keith H. ;
Lenke, Lawrence G. ;
Glattes, Chris R. ;
Rhim, Seungchul ;
Cheh, Gene .
SPINE, 2008, 33 (20) :2179-2184
[20]   Long-term clinical and radiographic outcomes and patient satisfaction after adult spinal deformity correction [J].
Kyrola, K. ;
Kautiainen, H. ;
Pekkanen, L. ;
Makela, P. ;
Kiviranta, I. ;
Hakkinen, A. .
SCANDINAVIAN JOURNAL OF SURGERY, 2019, 108 (04) :343-351