ANNIHILATORS OF POWER VALUES OF GENERALIZED DERIVATIONS ON MULTILINEAR POLYNOMIALS

被引:15
作者
De Filippis, Vincenzo [1 ]
机构
[1] Univ Messina, Fac Engn, Dipartimento Sci Ingn & Architettura, I-98166 Messina, Italy
关键词
prime rings; differential identities; generalized derivations;
D O I
10.1017/S0004972709000203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, I a nonzero right ideal of R. Let f(x(1), . . . . , x(n)) be a noncentral multilinear polynomial over C, in > I a fixed integer, a a fixed element of R, g a generalized derivation of R. If ag (f (r(1), . . . , r(n)))(m) = 0 for all r(1), . . . , r(n) is an element of I, then one of the following holds: (1) aI = ag(I) = (0); (2) g(x) = qx, for some q is an element of U and aq I = 0; (3) [f(x(1), . . . , x(n)), x(n+1)]x(n+2) is an identity for I; (4) g(x) = cx + [q, x] for all x is an element of R, where c, q is an element of U such that cI = 0 and [q, I]I = 0.
引用
收藏
页码:217 / 232
页数:16
相关论文
共 19 条
[1]   Generalized Derivations with Power Central Values on Multilinear Polynomials on Right Ideals [J].
Argac, N. ;
De Filippis, V. ;
Inceboz, H. G. .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2008, 120 :59-71
[2]  
Bresar M., 1990, Math. J.Okayama Univ., V32, P83
[3]   Annihilators of power values of derivations in prime rings [J].
Chang, CM ;
Lee, TK .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (07) :2091-2113
[4]  
Chang CM, 2003, TAIWAN J MATH, V7, P329
[5]   Additive subgroups generated by polynomial values on right ideals [J].
Chang, CM ;
Lee, TK .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (07) :2977-2984
[6]  
Chuang C.L., 1996, PHYS STATUS SOLIDI A, V24, P177, DOI DOI 10.1002/1521-396X(200108)186:23.0.CO
[7]  
2-6
[8]   GPIS HAVING COEFFICIENTS IN UTUMI QUOTIENT-RINGS [J].
CHUANG, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) :723-728
[9]  
Faith C., 1963, Acta Math. Acad. Sci. Hungar, V14, P369, DOI [10.1007/BF01895723, DOI 10.1007/BF01895723]
[10]  
Felzenszwalb B., 1978, CANAD MATH B, V21, P241