Regression with random design: A minimax study

被引:17
作者
Chesneau, Christophe [1 ]
机构
[1] Univ Paris 06, CNRS UMR 7599, Lab Probabill & Modeles Aleatoires, UFR Math, F-75013 Paris, France
关键词
regression with random design; minimax rate of convergence; Besov spaces;
D O I
10.1016/j.spl.2006.05.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of estimating a regression function based on a regression model with (known) random design is considered. By adopting the framework of wavelet analysis, we establish the asymptotic minimax rate of convergence under the LP risk over Besov balls. A part of this paper is devoted to the case where the design density is vanishing. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 53
页数:14
相关论文
共 12 条
[1]  
Birge L., 2001, NEW LOOK OLD RESULT
[2]   Wavelet estimation for samples with random uniform design [J].
Cai, TT ;
Brown, LD .
STATISTICS & PROBABILITY LETTERS, 1999, 42 (03) :313-321
[3]  
COHEN JJ, 1993, COMITATUS, V24, P1
[4]   On minimax wavelet estimators [J].
Delyon, B ;
Juditsky, A .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (03) :215-228
[5]  
DEVORE R, 2005, IMI PREPRINT, V22, P1
[6]  
Donoho DL, 1996, ANN STAT, V24, P508
[7]  
Ibragimov I. A., 1982, THEOR PROBAB APPL, V27, P81
[8]   Wavelet deconvolution in a periodic setting [J].
Johnstone, IM ;
Kerkyacharian, G ;
Picard, D ;
Raimondo, M .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 :547-573
[9]   Regression in random design and warped wavelets [J].
Kerkyacharian, G ;
Picard, D .
BERNOULLI, 2004, 10 (06) :1053-1105
[10]   Thresholding algorithms, maxisets and well-concentrated bases [J].
Hall, P .
TEST, 2000, 9 (02) :333-334