Brain Inspired Sequences Production by Spiking Neural Networks With Reward-Modulated STDP

被引:12
作者
Fang, Hongjian [1 ,2 ]
Zeng, Yi [1 ,2 ,3 ,4 ]
Zhao, Feifei [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Future Technol, Beijing, Peoples R China
[3] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai, Peoples R China
[4] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
关键词
brain-inspired intelligence; spiking neural network; reward-medulated STDP; population coding; reinforcement learning; TIMING-DEPENDENT PLASTICITY; REPRESENTATION; CHUNKING; CELLS; MECHANISMS; NOISE; MODEL;
D O I
10.3389/fncom.2021.612041
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding and producing embedded sequences according to supra-regular grammars in language has always been considered a high-level cognitive function of human beings, named "syntax barrier" between humans and animals. However, some neurologists recently showed that macaques could be trained to produce embedded sequences involving supra-regular grammars through a well-designed experiment paradigm. Via comparing macaques and preschool children's experimental results, they claimed that human uniqueness might only lie in the speed and learning strategy resulting from the chunking mechanism. Inspired by their research, we proposed a Brain-inspired Sequence Production Spiking Neural Network (SP-SNN) to model the same production process, followed by memory and learning mechanisms of the multi-brain region cooperation. After experimental verification, we demonstrated that SP-SNN could also handle embedded sequence production tasks, striding over the "syntax barrier." SP-SNN used Population-Coding and STDP mechanism to realize working memory, Reward-Modulated STDP mechanism for acquiring supra-regular grammars. Therefore, SP-SNN needs to simultaneously coordinate short-term plasticity (STP) and long-term plasticity (LTP) mechanisms. Besides, we found that the chunking mechanism indeed makes a difference in improving our model's robustness. As far as we know, our work is the first one toward the "syntax barrier" in the SNN field, providing the computational foundation for further study of related underlying animals' neural mechanisms in the future.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A brain-inspired algorithm that mitigates catastrophic forgetting of artificial and spiking neural networks with low computational cost
    Zhang, Tielin
    Cheng, Xiang
    Jia, Shuncheng
    Li, Chengyu T.
    Poo, Mu-ming
    Xu, Bo
    SCIENCE ADVANCES, 2023, 9 (34)
  • [42] Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks
    Saeedi, Nafise Erfanian
    Blamey, Peter J.
    Burkitt, Anthony N.
    Grayden, David B.
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (04)
  • [43] EEG Pattern Recognition using Brain-Inspired Spiking Neural Networks for Modelling Human Decision Processes
    Doborjeh, Zohreh G.
    Doborjeh, Maryam
    Kasabov, Nikola
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [44] Insect-Inspired Elementary Motion Detection Embracing Resistive Memory and Spiking Neural Networks
    Dalgaty, Thomas
    Vianello, Elisa
    Ly, Denys
    Indiveri, Giacomo
    De Salvo, Barbara
    Nowak, Etienne
    Casas, Jerome
    BIOMIMETIC AND BIOHYBRID SYSTEMS, 2018, 10928 : 115 - 128
  • [45] Brain-inspired learning rules for spiking neural network-based control: a tutorial
    Lee, Choongseop
    Park, Yuntae
    Yoon, Sungmin
    Lee, Jiwoon
    Cho, Youngho
    Park, Cheolsoo
    BIOMEDICAL ENGINEERING LETTERS, 2025, 15 (01) : 37 - 55
  • [46] A brain-inspired robot pain model based on a spiking neural network
    Feng, Hui
    Zeng, Yi
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [47] Brain-Inspired Spiking Neural Network Controller for a Neurorobotic Whisker System
    Antonietti, Alberto
    Geminiani, Alice
    Negri, Edoardo
    D'Angelo, Egidio
    Casellato, Claudia
    Pedrocchi, Alessandra
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [48] The Effect of Biologically-Inspired Mechanisms in Spiking Neural Networks for Neuromorphic Implementation
    Schuman, Catherine D.
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2636 - 2643
  • [49] A brain-inspired spiking neural network model with temporal encoding and learning
    Yu, Qiang
    Tang, Huajin
    Tan, Kay Chen
    Yu, Haoyong
    NEUROCOMPUTING, 2014, 138 : 3 - 13
  • [50] Stylistic Composition of Melodies Based on a Brain-Inspired Spiking Neural Network
    Liang, Qian
    Zeng, Yi
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2021, 15