The Detecting Cross-Site Scripting (XSS) Using Machine Learning Methods

被引:0
作者
Kascheev, Stanislav [1 ]
Olenchikova, Tatyana [1 ]
机构
[1] South Ural State Univ, Natl Res Univ, Chelyabinsk, Russia
来源
2020 GLOBAL SMART INDUSTRY CONFERENCE (GLOSIC) | 2020年
关键词
cross-site scripting; machine learning; XSS attack;
D O I
10.1109/glosic50886.2020.9267866
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article discusses the problem of detecting cross-site scripting (XSS) using machine learning methods. XSS is an attack in which malicious code is embedded on a page to interact with an attacker's web server. The XSS attack ranks third in the ranking of key web application risks according to Open Source Foundation for Application Security (OWASP). This attack has not been studied for a long time. It was considered harmless. However, this is fallacious: the page or HTTP Cookie may contain very vulnerable data, such as payment document numbers or the administrator session token. Machine learning is a tool that can be used to detect XSS attacks. This article describes an experiment. As a result the model for detecting XSS attacks was created. Following machine learning algorithms are considered: the support vector method, the decision tree, the Naive Bayes classifier, and Logistic Regression. The accuracy of the presented methods is made a comparison.
引用
收藏
页码:265 / 270
页数:6
相关论文
共 20 条
[1]  
Adnan S. K., 2017, WIREL COMMUN MOB COM
[2]  
[Anonymous], 2020, WORKING UNBALANCED D
[3]  
[Anonymous], LOGISITIC REGRESSION
[4]  
[Anonymous], PRECISION SCORE SCIK
[5]  
[Anonymous], RECALL SCORE SCIKIT
[6]  
[Anonymous], Naive Bayes - scikit-learn 1.0.2 documentation
[7]  
Ghoneim S., 2019, Accuracy, recall, precision, f-score & specificity, which to optimize on?
[8]  
Glas B., 2020, OWASP TOP 10 SECURIT
[9]  
Kirsten S., 2020, CROSS SITE SCRIPTING
[10]  
Mereani F., 2018, P 10 INT JOINT C COM, DOI [http://doi.org/10.5220/0006894901350143, DOI 10.5220/0006894901350143]