NRLMSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities

被引:224
作者
Emmert, J. T. [1 ]
Drob, D. P. [1 ]
Picone, J. M. [2 ]
Siskind, D. E. [1 ]
Jones, M., Jr. [1 ]
Mlynczak, M. G. [3 ]
Bernath, P. F. [4 ,5 ]
Chu, X. [6 ,7 ]
Doornbos, E. [8 ]
Funke, B. [9 ]
Goncharenko, L. P. [10 ]
Hervig, M. E. [11 ]
Schwartz, M. J. [12 ]
Sheese, P. E. [13 ]
Vargas, F. [14 ]
Williams, B. P. [15 ]
Yuan, T. [16 ]
机构
[1] US Naval Res Lab, Space Sci Div, Washington, DC 20375 USA
[2] US Naval Res Lab, Voluntary Emeritus Program, Washington, DC USA
[3] NASA Langley Res Ctr, Sci Directorate, Hampton, VA USA
[4] Old Dominion Univ, Dept Chem & Biochem, Norfolk, VA USA
[5] Univ Waterloo, Dept Chem, Waterloo, ON, Canada
[6] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[7] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA
[8] Royal Netherlands Meteorol Inst, KNMI, De Bilt, Netherlands
[9] CSIC, Inst Astrofis Andalucia, Granada, Spain
[10] MIT, Haystack Observ, Westford, MA 01886 USA
[11] GATS, Driggs, ID USA
[12] CALTECH, Jet Prop Lab, Pasadena, CA USA
[13] Univ Toronto, Dept Phys, Toronto, ON, Canada
[14] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA
[15] GATS, Boulder Div, Boulder, CO USA
[16] Utah State Univ, Ctr Atmospher & Space Sci, Logan, UT 84322 USA
基金
美国国家科学基金会;
关键词
ALGORITHM THEORETICAL BASIS; LOWER THERMOSPHERE; ATOMIC OXYGEN; MESOPAUSE TEMPERATURE; MASS-SPECTROMETER; HORIZONTAL WIND; BAND EMISSION; NA LIDAR; MESOSPHERE; REGION;
D O I
10.1029/2020EA001321
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
NRLMSIS* 2.0 is an empirical atmospheric model that extends from the ground to the exobase and describes the average observed behavior of temperature, eight species densities, and mass density via a parametric analytic formulation. The model inputs are location, day of year, time of day, solar activity, and geomagnetic activity. NRLMSIS 2.0 is a major, reformulated upgrade of the previous version, NRLMSISE-00. The model now couples thermospheric species densities to the entire column, via an effective mass profile that transitions each species from the fully mixed region below similar to 70 km altitude to the diffusively separated region above similar to 200 km. Other changes include the extension of atomic oxygen down to 50 km and the use of geopotential height as the internal vertical coordinate. We assimilated extensive new lower and middle atmosphere temperature, O, and H data, along with global average thermospheric mass density derived from satellite orbits, and we validated the model against independent samples of these data. In the mesosphere and below, residual biases and standard deviations are considerably lower than NRLMSISE-00. The new model is warmer in the upper troposphere and cooler in the stratosphere and mesosphere. In the thermosphere, N-2 and O densities arc lower in NRLMSIS 2.0; otherwise, the NRLMSISE-00 thermosphere is largely retained. Future advances in thermospheric specification will likely require new in situ mass spectrometer measurements, new techniques for species density measurement between 100 and 200 km, and the reconciliation of systematic biases among thermospheric temperature and composition data sets, including biases attributable to long-term changes.
引用
收藏
页数:37
相关论文
共 98 条
  • [1] [Anonymous], 2014, Guide to Meteorological Instruments and Methods of Observation, V2014
  • [2] Arnold KS, 2003, CONTEMP PHYS, V44, P35, DOI 10.1080/0010751021000019157
  • [3] SOME PROBLEMS CONCERNING THE TERRESTRIAL ATMOSPHERE ABOVE ABOUT THE 100 KM LEVEL
    BATES, DR
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1959, 253 (1275): : 451 - 462
  • [4] Global observations of thermospheric temperature and nitric oxide from MIPAS spectra at 5.3 μm
    Bermejo-Pantaleon, D.
    Funke, B.
    Lopez-Puertas, M.
    Garcia-Comas, M.
    Stiller, G. P.
    von Clarmann, T.
    Linden, A.
    Grabowski, U.
    Hoepfner, M.
    Kiefer, M.
    Glatthor, N.
    Kellmann, S.
    Lu, G.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
  • [5] The Atmospheric Chemistry Experiment (ACE)
    Bernath, P. F.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 186 : 3 - 16
  • [6] The thermospheric semiannual density response to solar EUV heating
    Bowman, Bruce R.
    Tobiska, W. Kent
    Kendra, Michael J.
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2008, 70 (11-12) : 1482 - 1496
  • [7] The DTM-2013 thermosphere model
    Bruinsma, Sean
    [J]. JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2015, 5
  • [8] The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth
    Chapman, S
    [J]. PROCEEDINGS OF THE PHYSICAL SOCIETY, 1931, 43 : 26 - 45
  • [9] Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver
    Chen, H
    White, MA
    Krueger, DA
    She, CY
    [J]. OPTICS LETTERS, 1996, 21 (15) : 1093 - 1095
  • [10] Chu X., 2005, LASER REMOTE SENSING, P179, DOI [DOI 10.1201/9781420030754.CH5, 10.1201/ 9781420030754.ch5]