Single-photon imaging over 200 km

被引:272
作者
Li, Zheng-Ping [1 ,2 ,3 ,4 ]
Ye, Jun-Tian [1 ,2 ,3 ,4 ]
Huang, Xin [1 ,2 ,3 ,4 ]
Jiang, Peng-Yu [1 ,2 ,3 ,4 ]
Cao, Yuan [1 ,2 ,3 ,4 ]
Hong, Yu [1 ,2 ,3 ,4 ]
Yu, Chao [1 ,2 ,3 ,4 ]
Zhang, Jun [1 ,2 ,3 ,4 ]
Zhang, Qiang [1 ,2 ,3 ,4 ]
Peng, Cheng-Zhi [1 ,2 ,3 ,4 ]
Xu, Feihu [1 ,2 ,3 ,4 ]
Pan, Jian-Wei [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Shanghai Branch, Shanghai 201315, Peoples R China
[4] Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
基金
中国国家自然科学基金;
关键词
LASER TRANSPONDERS; RANGE; FLIGHT; AIRBORNE;
D O I
10.1364/OPTICA.408657
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Long-range active imaging has widespread applications in remote sensing and target recognition. Single-photon light detection and ranging (lidar) has been shown to have high sensitivity and temporal resolution. On the application front, however, the operating range of practical single-photon lidar systems is limited to about tens of kilometers over the Earth's atmosphere, mainly due to the weak echo signal mixed with high background noise. Here, we present a compact coaxial single-photon lidar system capable of realizing 3D imaging at up to 201.5 km. It is achieved by using high-efficiency optical devices for collection and detection, and what we believe is a new noise-suppression technique that is efficient for long-range applications. We show that photon-efficient computational algorithms enable accurate 3D imaging over hundreds of kilometers with as few as 0.44 signal photons per pixel. The results represent a significant step toward practical, low-power lidar over extra-long ranges. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:344 / 349
页数:6
相关论文
共 46 条
[1]   Quantum-inspired computational imaging [J].
Altmann, Yoann ;
McLaughlin, Stephen ;
Padgett, Miles J. ;
Goyal, Vivek K. ;
Hero, Alfred O. ;
Faccio, Daniele .
SCIENCE, 2018, 361 (6403) :660-+
[2]   Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data [J].
Altmann, Yoann ;
Ren, Ximing ;
McCarthy, Aongus ;
Buller, Gerald S. ;
McLaughlin, Steve .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (05) :1935-1946
[3]  
American National Standards Institute, 2000, ANSI Z136 1 2014
[4]   Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition [J].
Buller, Gerald S. ;
Wallace, Andrew M. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2007, 13 (04) :1006-1015
[5]   Long-range depth imaging using a single-photon detector array and non-local data fusion [J].
Chan, Susan ;
Halimi, Abderrahim ;
Zhu, Feng ;
Gyongy, Istvan ;
Henderson, Robert K. ;
Bowman, Richard ;
McLaughlin, Stephen ;
Buller, Gerald S. ;
Leach, Jonathan .
SCIENTIFIC REPORTS, 2019, 9 (1)
[6]   Unified approach to photon-counting microlaser rangers, transponders, and altimeters [J].
Degnan, JJ .
SURVEYS IN GEOPHYSICS, 2001, 22 (5-6) :431-447
[7]   Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements [J].
Degnan, JJ .
JOURNAL OF GEODYNAMICS, 2002, 34 (3-4) :503-549
[8]   Asynchronous laser transponders for precise interplanetary ranging and time transfer [J].
Degnan, JJ .
JOURNAL OF GEODYNAMICS, 2002, 34 (3-4) :551-594
[9]  
Degnan JJ, 2008, ASTROPHYS SPACE SC L, V349, P231
[10]   Scanning, Multibeam, Single Photon Lidars for Rapid, Large Scale, High Resolution, Topographic and Bathymetric Mapping [J].
Degnan, John J. .
REMOTE SENSING, 2016, 8 (11)