Molecular mechanisms of sister-chromatid exchange

被引:211
作者
Wilson, David M., III
Thompson, Laity H.
机构
[1] NIA, Lab Mol Gerontol, NIH, Baltimore, MD 21224 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
关键词
sister-chromatid exchange; single-strand break DNA repair; CHO EM9; XRCC1; bloom syndrome; homologous recombination; DNA replication forks;
D O I
10.1016/j.mrfmmm.2006.11.017
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Sister-chromatid exchange (SCE) is the process whereby, during DNA replication, two sister chromatids break and rejoin with one another, physically exchanging regions of the parental strands in the duplicated chromosomes. This process is considered to be conservative and error-free, since no information is generally altered during reciprocal interchange by homologous recombination. Upon the advent of non-radiolabel detection methods for SCE, such events were used as genetic indicators for potential genotoxins/mutagens in laboratory toxicology tests, since, as we now know, most forms of DNA damage induce chromatid exchange upon replication fork collapse. Much of our present understanding of the mechanisms of SCE stems from studies involving nonhuman vertebrate cell lines that are defective in processes of DNA repair and/or recombination. In this article, we present a historical perspective of studies spearheaded by Dr. Anthony V. Carrano and colleagues focusing on SCE as a genetic outcome, and the role of the single-strand break DNA repair protein XRCC1 in suppressing SCE. A more general overview of the cellular processes and key protein "effectors" that regulate the manifestation of SCE is also presented. (c) 2006 Elsevier B.V All rights reserved.
引用
收藏
页码:11 / 23
页数:13
相关论文
共 125 条
[1]   CHROMOSOME-ABERRATIONS AND SISTER CHROMATID EXCHANGES IN CHINESE-HAMSTER CELLS EXPOSED TO VARIOUS CHEMICALS [J].
ABE, S ;
SASAKI, M .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1977, 58 (06) :1635-1641
[2]   The human pre-B cell line Nalm-6 is highly proficient in gene targeting by homologous recombination [J].
Adachi, N ;
So, S ;
Iiizumi, S ;
Nomura, Y ;
Murai, K ;
Yamakawa, C ;
Miyagawa, K ;
Koyama, H .
DNA AND CELL BIOLOGY, 2006, 25 (01) :19-24
[3]   DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells [J].
Arnaudeau, C ;
Lundin, C ;
Helleday, T .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (05) :1235-1245
[4]   AN INTEGRATED METRIC PHYSICAL MAP OF HUMAN-CHROMOSOME-19 [J].
ASHWORTH, LK ;
BATZER, MA ;
BRANDRIFF, B ;
BRANSCOMB, E ;
DEJONG, P ;
GARCIA, E ;
GARNES, JA ;
GORDON, LA ;
LAMERDIN, JE ;
LENNON, G ;
MOHRENWEISER, H ;
OLSEN, AS ;
SLEZAK, T ;
CARRANO, AV .
NATURE GENETICS, 1995, 11 (04) :422-427
[5]   Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining [J].
Audebert, M ;
Salles, B ;
Calsou, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (53) :55117-55126
[6]   Mobile D-loops are a preferred substrate for the Bloom's syndrome helicase [J].
Bachrati, Csanad Z. ;
Borts, Rhona H. ;
Hickson, Ian D. .
NUCLEIC ACIDS RESEARCH, 2006, 34 (08) :2269-2279
[7]   XRCC1 is required for DNA single-strand break repair in human cells [J].
Brem, R ;
Hall, J .
NUCLEIC ACIDS RESEARCH, 2005, 33 (08) :2512-2520
[8]   Bypass of senescence after disruption of p21(CIP1/WAF1) gene in normal diploid human fibroblasts [J].
Brown, JP ;
Wei, WY ;
Sedivy, JM .
SCIENCE, 1997, 277 (5327) :831-834
[9]   Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair [J].
Bryant, HE ;
Helleday, T .
NUCLEIC ACIDS RESEARCH, 2006, 34 (06) :1685-1691
[10]   XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly(ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro [J].
Caldecott, KW ;
Aoufouchi, S ;
Johnson, P ;
Shall, S .
NUCLEIC ACIDS RESEARCH, 1996, 24 (22) :4387-4394