BEMD image fusion based on PCNN and compressed sensing

被引:7
作者
Ding, Shifei [1 ,2 ]
Du, Peng [1 ]
Zhao, Xingyu [1 ]
Zhu, Qiangbo [1 ]
Xue, Yu [3 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100090, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China
关键词
PCNN; Compressed sensing; BEMD; Image entropy; Image fusion; ORTHOGONAL MATCHING PURSUIT; CONTOURLET TRANSFORM; ALGORITHM;
D O I
10.1007/s00500-018-3560-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bidimensional empirical mode decomposition (BEMD) is a new method for multi-scale image decomposition. In order to forbid useless information to cause an adverse impact on results and make the process have a better self-adaptability, this paper presents a new multi-scale image fusion method, which combines pulse coupled neural network (PCNN) and compressed sensing, and uses them in the BEMD. At first, BEMD processes the original images decomposed into multiple bidimensional intrinsic mode function (BIMFs) and a residual image. Then after doing compression measurement on each layer of BIMFS, we can get compression measurement coefficients. The coefficients at the same layer do the PCNN image fusion, and we can get measurement sampling BIMFs. And then after measurement sampling BIMFs reconstructed, we can get the final BIMFs. The residual images do the fusion based on entropy weight to get the final residual image. At last, after BEMD inverse transform, the final BIMFs and the final residual image get the result image. Experimental studies have shown that compared with other multi-scale decompositions-based image fusion algorithms, the algorithm in this paper has a better performance in terms of objective criteria and visual appearance.
引用
收藏
页码:10045 / 10054
页数:10
相关论文
共 40 条
[1]   Volumetric Arc Treatment Planning in the Brain Using MRI-Derived Synthetic CT Images [J].
Balter, J. ;
Hsu, S. ;
Vineberg, K. ;
Lawrence, T. S. ;
Feng, M. U. ;
Tsien, C. I. ;
Cao, Y. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2014, 90 :S201-S201
[2]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[3]   An entropy-based approach to automatic image segmentation of satellite images [J].
Barbieri, Andre L. ;
de Arruda, G. F. ;
Rodrigues, Francisco A. ;
Bruno, Odemir M. ;
Costa, Luciano da Fontoura .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (03) :512-518
[4]   A novel approach of fast and adaptive bidimensional empirical mode decomposition [J].
Bhuiyan, Sharif M. A. ;
Adhami, Reza R. ;
Khan, Jesmin F. .
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, :1313-1316
[5]   BIDIMENSIONAL EMPIRICAL MODE DECOMPOSITION USING VARIOUS INTERPOLATION TECHNIQUES [J].
Bhuiyan, Sharif M. A. ;
Attoh-Okine, Nii O. ;
Barner, Kenneth E. ;
Ayenu-Prah, Albert Y. ;
Adhami, Reza R. .
ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2009, 1 (02) :309-338
[6]   Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation [J].
Bhuiyan, Sharif M. A. ;
Adhami, Reza R. ;
Khan, Jesmin F. .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2008, 2008 (1)
[7]   THE LAPLACIAN PYRAMID AS A COMPACT IMAGE CODE [J].
BURT, PJ ;
ADELSON, EH .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (04) :532-540
[8]   Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise [J].
Cai, T. Tony ;
Wang, Lie .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (07) :4680-4688
[9]   Color Image Analysis by Quaternion-Type Moments [J].
Chen, Beijing ;
Shu, Huazhong ;
Coatrieux, Gouenou ;
Chen, Gang ;
Sun, Xingming ;
Coatrieux, Jean Louis .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2015, 51 (01) :124-144
[10]   Attention-based hierarchical fusion of visible and infrared images [J].
Chen, Yanfei ;
Sang, Nong .
OPTIK, 2015, 126 (23) :4243-4248