Characterization of regularity for a connected Abelian action

被引:5
作者
Arnal, Didier [1 ]
Currey, Bradley [2 ]
Oussa, Vignon [3 ]
机构
[1] Univ Bourgogne, UMR CNRS 5584, Inst Math Bourgogne, Dijon, France
[2] St Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USA
[3] Bridgewater State Univ, Dept Math, Bridgewater, MA 02324 USA
来源
MONATSHEFTE FUR MATHEMATIK | 2016年 / 180卷 / 01期
关键词
Regular and not regular orbits; Lie algebra roots; Linear Lie group action;
D O I
10.1007/s00605-015-0811-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a finite dimensional real vector space, let g be the real span of a finite set of commuting endomorphisms of V, and G = exp g. We study the orbit structure in elements of a finite partition of V into explicit G-invariant connected sets. In particular, we prove that either there is an open conull G-invariant subset Omega of V in which every G-orbit is regular, or there is a G-invariant, conull, G(delta) subset of V in which every orbit is not regular. We present an explicit computable necessary and sufficient condition for almost everywhere regularity. Finally in the case of regularity we construct an explicit topological cross-section for the orbits in Omega.
引用
收藏
页码:1 / 37
页数:37
相关论文
共 16 条
[1]  
[Anonymous], 2002, The Journal of Geometric Analysis
[2]  
[Anonymous], 1987, Geometrie Algebrique Reelle
[3]   Regularity of abelian linear actions [J].
Arnal, Didier ;
Dali, Bechir ;
Currey, Bradley ;
Oussa, Vignon .
COMMUTATIVE AND NONCOMMUTATIVE HARMONIC ANALYSIS AND APPLICATIONS, 2013, 603 :89-109
[4]   Canonical coordinates for a class of solvable groups [J].
Arnal, Didier ;
Currey, Bradley ;
Dali, Bechir .
MONATSHEFTE FUR MATHEMATIK, 2012, 166 (01) :19-55
[5]  
Bernat P., 1972, Monographies de la S.M.F
[6]   Characterizing Abelian Admissible Groups [J].
Bruna, J. ;
Cufi, J. ;
Fuehr, H. ;
Miro, M. .
JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) :1045-1074
[7]  
Dali B, 2008, J LIE THEORY, V18, P45
[8]   TRANSFORMATION GROUPS AND C-ALGEBRAS [J].
EFFROS, EG .
ANNALS OF MATHEMATICS, 1965, 81 (01) :38-&
[9]  
Führ H, 2005, LECT NOTES MATH, V1863, P1
[10]   GENERALIZED CALDERON CONDITIONS AND REGULAR ORBIT SPACES [J].
Fuehr, Hartmut .
COLLOQUIUM MATHEMATICUM, 2010, 120 (01) :103-126