A short and versatile finite element multiscale code for homogenization problems

被引:48
作者
Abdulle, Assyr [1 ]
Nonnenmacher, Achim [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Math Sect, CH-1015 Lausanne, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
Multiscale method; Macro-to-micro modeling; Microstructure; FEM implementation; Composite material; PERIODIC HETEROGENEOUS MEDIA; COMPOSITE-MATERIALS; MULTIGRID METHOD; FEM;
D O I
10.1016/j.cma.2009.03.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We describe a multiscale finite element (FE) solver for elliptic or parabolic problems with highly oscillating coefficients. Based on recent developments of the so-called heterogeneous multiscale method (HMM), the algorithm relies on coupled macro- and microsolvers. The framework of the HMM allows to design a code whose structure follows the classical finite elements implementation at the macro level. To account for the fine scales of the problem, elementwise numerical integration is replaced by micro FE methods on sampling domains. We discuss a short and flexible FE implementation of the multiscale algorithm, which can accommodate simplicial or quadrilateral FE and various coupling conditions for the constrained micro simulations. Extensive numerical examples including three dimensional and time dependent problems are presented illustrating the efficiency and the versatility of the computational strategy. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2839 / 2859
页数:21
相关论文
共 33 条
[1]  
Abdulle, 2009, GAKUTO INT MSA, V31, P135
[2]   Analysis of a heterogeneous multiscale FEM for problems in elasticity [J].
Abdulle, A .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (04) :615-635
[3]   Heterogeneous multiscale FEM for diffusion problems on rough surfaces [J].
Abdulle, A ;
Schwab, C .
MULTISCALE MODELING & SIMULATION, 2005, 3 (01) :195-220
[4]   On a priori error analysis of fully discrete heterogeneous multiscale FEM [J].
Abdulle, A .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :447-459
[5]   Fourth order Chebyshev methods with recurrence relation [J].
Abdulle, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06) :2041-2054
[6]  
ABDULLE A, 2007, C R ACAD SCI PARIS 1, V346, P97
[7]   Finite element heterogeneous multiscale methods with near optimal computational complexity [J].
Abdulle, Assyr ;
Engquist, Bjorn .
MULTISCALE MODELING & SIMULATION, 2007, 6 (04) :1059-1084
[8]   Heterogeneous multiscale methods with quadrilateral finite elements [J].
Abdulle, Assyr .
NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2006, :743-751
[9]   Remarks around 50 lines of Matlab: short finite element implementation [J].
Alberty, J ;
Carstensen, C ;
Funken, SA .
NUMERICAL ALGORITHMS, 1999, 20 (2-3) :117-137
[10]  
[Anonymous], 1978, ASYMPTOTIC ANAL PERI