MULTI-KERNEL COLLABORATIVE REPRESENTATION FOR IMAGE CLASSIFICATION

被引:0
作者
Liu, Weiyang [1 ]
Yu, Zhiding [2 ]
Wen, Yandong [3 ]
Yang, Meng [4 ]
Zou, Yuexian [1 ]
机构
[1] Peking Univ, Sch ECE, Beijing, Peoples R China
[2] Carnegie Mellon Univ, Dept ECE, Pittsburgh, PA 15213 USA
[3] South China Univ Tech, Sch EIE, Guangzhou, Guangdong, Peoples R China
[4] Shenzhen Univ, Coll CS & SE, Shenzhen, Peoples R China
来源
2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2015年
关键词
Multi-Kernel; Collaborative Representation; Image Classification;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the image classification problem via multiple kernel collaborative representation (MKCR). We generalize the kernel collaborative representation based classification to a multi-kernel framework where multiple kernels are jointly learned with the representation coefficients. The intrinsic idea of multiple kernel learning is adopted in our MKCR model. Experimental results show MKCR converges within reasonable iterations and achieves state-of-the-art performance.
引用
收藏
页码:21 / 25
页数:5
相关论文
共 32 条
[11]  
Bennett K. P., 2002, ACM SIGKDD
[12]  
Bertsekas D. P., 1998, NONLINEAR PROGRANMMI
[13]  
Chen Scott Shaobing, 2001, SIAM REV
[14]   Image denoising via sparse and redundant representations over learned dictionaries [J].
Elad, Michael ;
Aharon, Michal .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) :3736-3745
[15]  
Grant Michael., 2006, Disciplined Convex Programming
[16]   Label Consistent K-SVD: Learning a Discriminative Dictionary for Recognition [J].
Jiang, Zhuolin ;
Lin, Zhe ;
Davis, Larry S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) :2651-2664
[17]  
Jiang Zhuolin., 2011, CVPR
[18]  
Lazebnik S., 2006, IEEECOMPUT SOC C COM
[19]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[20]   Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories [J].
Li Fei-Fei ;
Fergus, Rob ;
Perona, Pietro .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2007, 106 (01) :59-70