Au-MoS2 Hybrids as Hydrogen Evolution Electrocatalysts

被引:59
作者
Bar-Ziv, Rorien [1 ]
Ranjan, Priyadarshi [2 ]
Lavie, Anna [3 ]
Jain, Akash [4 ]
Garai, Somenath [3 ,9 ]
Bar Hen, Avraham [2 ]
Popoyitz-Biro, Ronit [3 ]
Tenne, Reshef [3 ]
Arenal, Raul [5 ,6 ,7 ]
Ramasubramaniam, Ashwin [8 ]
Lajaunie, Luc [7 ,10 ]
Bar-Sadan, Maya [2 ]
机构
[1] Nucl Res Ctr Negev, IL-84190 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Dept Chem, IL-84105 Beer Sheva, Israel
[3] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel
[4] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA
[5] Univ Zaragoza, Inst Nanociencia Aragim, Lab Microscopias Avanzadas, Zaragoza 50018, Spain
[6] ARAID Fdn, Zaragoza 50018, Spain
[7] Univ Zaragoza, CSIC, Inst Ciencias Mat Aragon, Calle Pedro Cerbuna 12, E-50009 Zaragoza, Spain
[8] Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA
[9] NIT Tiruchirappalli, Dept Chem, Tiruchirappalli 620015, TN, India
[10] Univ Cadiz, Fac Ciencias, Dept Ciencia Mat & Ingn Met & Quim Inorgan, Campus Rio San Pedro S-N, Cadiz 11510, Spain
基金
欧盟地平线“2020”; 以色列科学基金会;
关键词
core-shell; density-functional theory; charge transfer; nanostars; nanorods; electrocatalysis; transition-metal dichalcogenides; TRANSITION-METAL DICHALCOGENIDES; TOTAL-ENERGY CALCULATIONS; CATALYTIC-ACTIVITY; SULFUR VACANCIES; BASAL-PLANE; LAYER MOS2; MONOLAYER; SURFACE; SITES; ALGORITHM;
D O I
10.1021/acsaem.9b01147
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Core-shell nanoparticles provide a unique morphology to exploit electronic interactions between dissimilar materials, conferring upon them new or improved functionalities. MoS2 is a layered transition-metal disulfide that has been studied extensively for the hydrogen evolution reaction (HER) but still suffers from low electrocatalytic activity due to its poor electronic conductivity. To understand the fundamental aspects of the MoS2-Au hybrids with regard to their electrocatalytic activity, a single to a few layers of MoS2 were deposited over Au nanoparticles via a versatile procedure that allows for complete encapsulation of Au nanoparticles of arbitrary geometries. High-resolution transmission electron microscopy of the Au@MoS2 nanoparticles provides direct evidence for the core-shell morphology and also reveals the presence of morphological defects and irregularities in the MoS2 shell that are known to be more active for HER than the pristine MoS2 basal plane. Electrochemical measurements show a significant improvement in the HER activity of AugMoS(2) nanoparticles relative to freestanding MoS2 or Au-decorated MoS2. The best electrochemical performance was demonstrated by the Au nanostars-the largest Au core employed here-encapsulated in a MoS2 shell. Density-functional theory calculations show that charge transfer occurs from the Au to the MoS2 layers, producing a more conductive catalyst layer and a better electrode for electrochemical HER The strategies to further improve the catalytic properties of such hybrid nanoparticles are discussed.
引用
收藏
页码:6043 / 6050
页数:15
相关论文
共 61 条
[1]  
[Anonymous], 2016, 2D Materials, DOI DOI 10.1088/2053-1583/3/2/022002
[2]   Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid [J].
Asadi, Mohammad ;
Kim, Kibum ;
Liu, Cong ;
Addepalli, Aditya Venkata ;
Abbasi, Pedram ;
Yasaei, Poya ;
Phillips, Patrick ;
Behranginia, Amirhossein ;
Cerrato, Jose M. ;
Haasch, Richard ;
Zapol, Peter ;
Kumar, Bijandra ;
Klie, Robert F. ;
Abiade, Jeremiah ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
SCIENCE, 2016, 353 (6298) :467-470
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system [J].
Chen, P. X. ;
Qiu, H. W. ;
Xu, S. C. ;
Liu, X. Y. ;
Li, Z. ;
Hu, L. T. ;
Li, C. H. ;
Guo, J. ;
Jiang, S. Z. ;
Huo, Y. Y. .
APPLIED SURFACE SCIENCE, 2016, 375 :207-214
[5]   Tuning Electronic Structure of Single Layer MoS2 through Defect and Interface Engineering [J].
Chen, Yan ;
Huang, Shengxi ;
Ji, Xiang ;
Adepalli, Kiran ;
Yin, Kedi ;
Ling, Xi ;
Wang, Xinwei ;
Xue, Jianmin ;
Dresselhaus, Mildred ;
Kong, Jing ;
Yildiz, Bilge .
ACS NANO, 2018, 12 (03) :2569-2579
[6]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630
[7]   Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping [J].
Deng, Jiao ;
Li, Haobo ;
Xiao, Jianping ;
Tu, Yunchuan ;
Deng, Dehui ;
Yang, Huaixin ;
Tian, Huanfang ;
Li, Jianqi ;
Ren, Pengju ;
Bao, Xinhe .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (05) :1594-1601
[8]   Synthesis and characterization of MoS2 nanosheets [J].
Deokar, G. ;
Vignaud, D. ;
Arenal, R. ;
Louette, P. ;
Colomer, J-F .
NANOTECHNOLOGY, 2016, 27 (07)
[9]   Nanoparticle@MoS2 Core-Shell Architecture: Role of the Core Material [J].
DiStefano, Jennifer G. ;
Li, Yuan ;
Jung, Hee Joon ;
Hao, Shiqian ;
Murthy, Akshay A. ;
Zhang, Xiaomi ;
Wolverton, Chris ;
Dravid, Vinayak P. .
CHEMISTRY OF MATERIALS, 2018, 30 (14) :4675-4682
[10]   Single-Layer MoS2 with Sulfur Vacancies: Structure and Catalytic Application [J].
Duy Le ;
Rawal, Takat B. ;
Rahman, Talat S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (10) :5346-5351