Hausdorff dimensions of some irregular sets associated with β-expansions

被引:10
作者
Li JinJun [1 ]
Li Bing [2 ]
机构
[1] Minnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Peoples R China
[2] S China Univ Technol, Sch Math, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
beta-expansion; irregular sets; Hausdorff dimension; RECURRENCE; POINTS;
D O I
10.1007/s11425-015-5046-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hausdorff dimensions of some refined irregular sets associated with beta-expansions are determined for any beta > 1. More precisely, Hausdorff dimensions of the sets {x is an element of [0,1) : lim inf(n ->infinity) S-n(x,beta)/n = alpha(1), lim sup(n ->infinity) S-n(x,beta)/n = alpha(2)}, alpha(1), alpha(2) >= 0 are obtained completely, where S (n) (x, beta) = I pound (k = 1) (n) epsilon (k) (x, beta) denotes the sum of the first n digits of the beta-expansion of x. As an application, we present another concise proof of that the set of points x a [0, 1) satisfying does not exist is of full Hausdorff dimension.
引用
收藏
页码:445 / 458
页数:14
相关论文
共 31 条
[1]   The multifractal spectra for the recurrence rates of beta-transformations [J].
Ban, Jung-Chao ;
Li, Bing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (02) :1662-1679
[2]   Sets of "non-typical" points have full topological entropy and full Hausdorff dimension [J].
Barreira, L ;
Schmeling, J .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 116 (1) :29-70
[3]   BETA-EXPANSIONS AND SYMBOLIC DYNAMICS [J].
BLANCHARD, F .
THEORETICAL COMPUTER SCIENCE, 1989, 65 (02) :131-141
[4]  
Carbone L., 2004, SCI MATH JPN, V60, P347
[5]  
Dajani K., 2002, Ergodic Theory of Numbers
[6]  
Eggleston H., 1952, Proceedings of the London Mathematics Soc. (2), V54, P42, DOI DOI 10.1112/PLMS/S2-54.1.42
[7]   Topological entropy for divergence points [J].
Ercai, C ;
Küpper, T ;
Lin, S .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :1173-1208
[8]  
Falconer K., 2014, Fractal geometry: mathematical foundations and applications
[9]   Level sets of β-expansions [J].
Fan, A ;
Zhu, H .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (10) :709-712
[10]   Recurrence, dimension and entropy [J].
Fan, AH ;
Feng, DJ ;
Wu, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :229-244