Low-Intensity Pulsed Ultrasound Attenuates LPS-Induced Neuroinflammation and Memory Impairment by Modulation of TLR4/NF-κB Signaling and CREB/BDNF Expression

被引:55
|
作者
Chen, Tao-Tao [1 ]
Lan, Tsuo-Hung [2 ,3 ]
Yang, Feng-Yi [1 ,4 ]
机构
[1] Natl Yang Ming Univ, Dept Biomed Imaging & Radiol Sci, Taipei, Taiwan
[2] Natl Yang Ming Univ, Dept Psychiat, Taipei, Taiwan
[3] Taichung Vet Gen Hosp, Dept Psychiat, Taichung, Taiwan
[4] Natl Yang Ming Univ, Biophoton & Mol Imaging Res Ctr, Taipei, Taiwan
关键词
BDNF; beta-amyloid; memory impairment; neuroinflammation; ultrasound; BLOOD-BRAIN-BARRIER; LIPOPOLYSACCHARIDE-INDUCED-NEUROINFLAMMATION; NF-KAPPA-B; NEUROTROPHIC FACTOR; ALZHEIMERS-DISEASE; BDNF; INFLAMMATION; ACTIVATION; MICROGLIA; ASTROCYTE;
D O I
10.1093/cercor/bhy039
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The purpose of this study was to investigate the restorative role of low-intensity pulsed ultrasound (LIPUS) against lipopolysaccharide (LPS)-induced neuroinflammation and memory impairments in a simulation of Alzheimer's disease. Mice subjected to LPS administration (250 mu g/kg, i.p.) were treated with LIPUS daily for 7 days. The levels of brain-derived neurotrophic factor (BDNF) and inflammatory markers were estimated in brain tissue using western blot. After LIPUS treatment, the neuroprotective effects of LIPUS in mice were assessed by behavioral tests. LPS plus LIPUS-treated mice exhibited a significant increase in the average time spent in the target quadrant compared to the LPS-treated group. Compared with the LPS-treated group, LPS plus LIPUS-treated mice revealed a preference for the novel object. LIPUS treatment significantly attenuated LPS-induced increases in the expression of amyloid-beta (A beta) and amyloid precursor protein (APP) in the hippocampus region of LPS-treated mice. Furthermore, LIPUS significantly reduced the protein levels of TNF-alpha, IL-1 beta, and IL-6 in the mice brain induced by LPS. LIPUS treatment induces neuroprotection by inhibiting the LPS-induced activation of TLR4/NF-kappa B inflammatory signaling and by enhancing the associated CREB/BDNF expression in LPS-treated mice. Our data showed that LIPUS attenuated LPS-induced memory impairment as well as amyloidogenesis via the suppression of neuroinflammatory activity and BDNF decline.
引用
收藏
页码:1430 / 1438
页数:9
相关论文
共 50 条
  • [31] Allicin Alleviated LPS-Induced Mastitis via the TLR4/NF-κB Signaling Pathway in Bovine Mammary Epithelial Cells
    Che, Hao-Yu
    Zhou, Chang-Hai
    Lyu, Chen-Chen
    Meng, Yu
    He, Yun-Tong
    Wang, Hao-Qi
    Wu, Hong-Yu
    Zhang, Jia-Bao
    Yuan, Bao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (04)
  • [32] LPS Preconditioning Attenuates Apoptosis Mechanism by Inhibiting NF-κB and Caspase-3 Activity: TLR4 Pre-activation in the Signaling Pathway of LPS-Induced Neuroprotection
    Pushpa Gandi Sangaran
    Zaridatul Aini Ibrahim
    Zamri Chik
    Zahurin Mohamed
    Abolhassan Ahmadiani
    Molecular Neurobiology, 2021, 58 : 2407 - 2422
  • [33] Aloperine suppresses LPS-induced macrophage activation through inhibiting the TLR4/NF-κB pathway
    Yinyin Ye
    Yuwei Wang
    Yanlang Yang
    Liangfei Tao
    Inflammation Research, 2020, 69 : 375 - 383
  • [34] Aloperine suppresses LPS-induced macrophage activation through inhibiting the TLR4/NF-κB pathway
    Ye, Yinyin
    Wang, Yuwei
    Yang, Yanlang
    Tao, Liangfei
    INFLAMMATION RESEARCH, 2020, 69 (04) : 375 - 383
  • [35] Disulfiram inhibits LPS-induced TLR4/NF-κB signaling in spheroids derived from human colorectal cancer cells
    Devi, Narayanan Poornima
    Vidya, Warrier
    Karunagaran, Devarajan
    MOLECULAR & CELLULAR TOXICOLOGY, 2024,
  • [36] LPS Preconditioning Attenuates Apoptosis Mechanism by Inhibiting NF-κB and Caspase-3 Activity: TLR4 Pre-activation in the Signaling Pathway of LPS-Induced Neuroprotection
    Sangaran, Pushpa Gandi
    Ibrahim, Zaridatul Aini
    Chik, Zamri
    Mohamed, Zahurin
    Ahmadiani, Abolhassan
    MOLECULAR NEUROBIOLOGY, 2021, 58 (05) : 2407 - 2422
  • [37] Gamma-irradiated resveratrol negatively regulates LPS-induced MAPK and NF-κB signaling through TLR4 in macrophages
    Byun, Eui-Baek
    Sung, Nak-Yun
    Park, Jae-Nam
    Yang, Mi-So
    Park, Sang-Hyun
    Byun, Eui-Hong
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2015, 25 (02) : 249 - 259
  • [38] The procyanidin trimer C1 inhibits LPS-induced MAPK and NF-κB signaling through TLR4 in macrophages
    Byun, Eui-Baek
    Sung, Nak-Yun
    Byun, Eui-Hong
    Song, Du-Sup
    Kim, Jae-Kyung
    Park, Jong-Heum
    Song, Beom-Seok
    Park, Sang-Hyun
    Lee, Ju-Woon
    Byun, Myung-Woo
    Kim, Jae-Hun
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2013, 15 (02) : 450 - 456
  • [39] Artemisinin Attenuates Amyloid-Induced Brain Inflammation and Memory Impairments by Modulating TLR4/NF-κB Signaling
    Zhao, Xia
    Huang, Xiaosu
    Yang, Chao
    Jiang, Yizhou
    Zhou, Wenshu
    Zheng, Wenhua
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (11)
  • [40] Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways
    Hou, Yue
    Li, Guoxun
    Wang, Jian
    Pan, Yingni
    Jiao, Kun
    Du, Juan
    Chen, Ru
    Wang, Bing
    Li, Ning
    SCIENTIFIC REPORTS, 2017, 7