Low-Intensity Pulsed Ultrasound Attenuates LPS-Induced Neuroinflammation and Memory Impairment by Modulation of TLR4/NF-κB Signaling and CREB/BDNF Expression

被引:56
|
作者
Chen, Tao-Tao [1 ]
Lan, Tsuo-Hung [2 ,3 ]
Yang, Feng-Yi [1 ,4 ]
机构
[1] Natl Yang Ming Univ, Dept Biomed Imaging & Radiol Sci, Taipei, Taiwan
[2] Natl Yang Ming Univ, Dept Psychiat, Taipei, Taiwan
[3] Taichung Vet Gen Hosp, Dept Psychiat, Taichung, Taiwan
[4] Natl Yang Ming Univ, Biophoton & Mol Imaging Res Ctr, Taipei, Taiwan
关键词
BDNF; beta-amyloid; memory impairment; neuroinflammation; ultrasound; BLOOD-BRAIN-BARRIER; LIPOPOLYSACCHARIDE-INDUCED-NEUROINFLAMMATION; NF-KAPPA-B; NEUROTROPHIC FACTOR; ALZHEIMERS-DISEASE; BDNF; INFLAMMATION; ACTIVATION; MICROGLIA; ASTROCYTE;
D O I
10.1093/cercor/bhy039
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The purpose of this study was to investigate the restorative role of low-intensity pulsed ultrasound (LIPUS) against lipopolysaccharide (LPS)-induced neuroinflammation and memory impairments in a simulation of Alzheimer's disease. Mice subjected to LPS administration (250 mu g/kg, i.p.) were treated with LIPUS daily for 7 days. The levels of brain-derived neurotrophic factor (BDNF) and inflammatory markers were estimated in brain tissue using western blot. After LIPUS treatment, the neuroprotective effects of LIPUS in mice were assessed by behavioral tests. LPS plus LIPUS-treated mice exhibited a significant increase in the average time spent in the target quadrant compared to the LPS-treated group. Compared with the LPS-treated group, LPS plus LIPUS-treated mice revealed a preference for the novel object. LIPUS treatment significantly attenuated LPS-induced increases in the expression of amyloid-beta (A beta) and amyloid precursor protein (APP) in the hippocampus region of LPS-treated mice. Furthermore, LIPUS significantly reduced the protein levels of TNF-alpha, IL-1 beta, and IL-6 in the mice brain induced by LPS. LIPUS treatment induces neuroprotection by inhibiting the LPS-induced activation of TLR4/NF-kappa B inflammatory signaling and by enhancing the associated CREB/BDNF expression in LPS-treated mice. Our data showed that LIPUS attenuated LPS-induced memory impairment as well as amyloidogenesis via the suppression of neuroinflammatory activity and BDNF decline.
引用
收藏
页码:1430 / 1438
页数:9
相关论文
共 50 条
  • [21] Soyasapogenol B and Genistein Attenuate Lipopolysaccharide-Induced Memory Impairment in Mice by the Modulation of NF-κB-Mediated BDNF Expression
    Lee, Hae-Ji
    Lim, Su-Min
    Ko, Da-Bin
    Jeong, Jin-Ju
    Hwang, Yun-Ha
    Kim, Dong-Hyun
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2017, 65 (32) : 6877 - 6885
  • [22] Aromatic-Turmerone Attenuates LPS-Induced Neuroinflammation and Consequent Memory Impairment by Targeting TLR4-Dependent Signaling Pathway
    Chen, Min
    Chang, Yuan-yuan
    Huang, Shun
    Xiao, Li-hang
    Zhou, Wei
    Zhang, Lan-yue
    Li, Chun
    Zhou, Ren-ping
    Tang, Jian
    Lin, Li
    Du, Zhi-yun
    Zhang, Kun
    MOLECULAR NUTRITION & FOOD RESEARCH, 2018, 62 (02)
  • [23] Safinamide prevents lipopolysaccharide (LPS)-induced inflammation in macrophages by suppressing TLR4/NF-κB signaling
    Qian, LuLu
    Li, Jun-Zhao
    Sun, XueMei
    Chen, Jie-Bin
    Dai, Ying
    Huang, Qiu-Xiang
    Jin, Ying-Ji
    Duan, Qing-Ning
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2021, 96
  • [24] Nerolidol Protects Against LPS-induced Acute Kidney Injury via Inhibiting TLR4/NF-κB Signaling
    Zhang, Lu
    Sun, Dandan
    Bao, Yan
    Shi, Yan
    Cui, Yan
    Guo, Minghao
    PHYTOTHERAPY RESEARCH, 2017, 31 (03) : 459 - 465
  • [25] MiR-124-3p targeting PDE4B attenuates LPS-induced ALI through the TLR4/NF-κB signaling pathway
    Zhou, Qiao
    He, Ding-Xiu
    Deng, Yi-Ling
    Wang, Chun-Li
    Zhang, Lan-Lan
    Jiang, Fa-Ming
    Irakoze, Laurent
    Liang, Zong-An
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2022, 105
  • [26] Lianqinjiedu decoction attenuates LPS-induced inflammation and acute lung injury in rats via TLR4/NF-κB pathway
    Deng, Guiming
    He, Hai
    Chen, Zheng
    OuYang, Linqi
    Xiao, Xiaoqin
    Ge, Jinwen
    Xiang, Biao
    Jiang, Sichen
    Cheng, Shaowu
    BIOMEDICINE & PHARMACOTHERAPY, 2017, 96 : 148 - 152
  • [27] Anti-Inflammatory Pyranochalcone Derivative Attenuates LPS-Induced Acute Kidney Injury via Inhibiting TLR4/NF-κB Pathway
    Shi, Min
    Zeng, Xiaoxi
    Guo, Fan
    Huang, Rongshuang
    Feng, Yanhuan
    Ma, Liang
    Zhou, Li
    Fu, Ping
    MOLECULES, 2017, 22 (10)
  • [28] 6-Bromoindirubin-3′-Oxime Suppresses LPS-Induced Inflammation via Inhibition of the TLR4/NF-κB and TLR4/MAPK Signaling Pathways
    Chang Liu
    Xin Tang
    Wenjing Zhang
    Guohong Li
    Yingyu Chen
    Aizhen Guo
    Changmin Hu
    Inflammation, 2019, 42 : 2192 - 2204
  • [29] Pinitol attenuates LPS-induced pneumonia in experimental animals: Possible role via inhibition of the TLR-4 and NF-κB/IκBα signaling cascade pathway
    Fan, Yingying
    Wang, Jian
    Feng, Zhihui
    Cao, Ke
    Xu, Hao
    Liu, Jiankang
    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2021, 35 (01)
  • [30] Chitosan oligosaccharide-mediated attenuation of LPS-induced inflammation in IPEC-J2 cells is related to the TLR4/NF-κB signaling pathway
    Shi, Lin
    Fang, Biao
    Yong, Yanhong
    Li, Xuewen
    Gong, Dongliang
    Li, Junyu
    Yu, Tianyue
    Gooneratne, Ravi
    Gao, Zhenhua
    Li, Sidong
    Ju, Xianghong
    CARBOHYDRATE POLYMERS, 2019, 219 : 269 - 279