Hyperbolic homoclinic points of Z(d)-actions in lattice dynamical systems

被引:5
作者
Afraimovich, VS [1 ]
Chow, SN [1 ]
Shen, WX [1 ]
机构
[1] AUBURN UNIV,DEPT MATH,AUBURN,AL 36849
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1996年 / 6卷 / 06期
关键词
D O I
10.1142/S0218127496000576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Z(d) action on a set of equilibrium solutions of a lattice dynamical system, i.e., a system with discrete spatial variables, and the stability and hyperbolicity of the equilibrium solutions. Complicated behavior of Z(d)-action corresponds to the existence of an infinite number of equilibrium solutions which are randomly situated along spatial coordinates. We prove that the existence of a homoclinic point of a Z(d)-action implies complicated behavior, provided the hyperbolicity of the homoclinic solution with respect to the lattice dynamical system (this is a generalization of the previous work of the first two authors). Similar result holds for hyperbolic partially homoclinic and heteroclinic points. We show the equivalence of stability for any equilibrium solutions and the equivalence of hyperbolicity for homoclinic points under various norms.
引用
收藏
页码:1059 / 1075
页数:17
相关论文
共 14 条
  • [1] TRAVELING WAVES IN LATTICE MODELS OF MULTIDIMENSIONAL AND MULTICOMPONENT MEDIA .1. GENERAL HYPERBOLIC PROPERTIES
    AFRAIMOVICH, V
    PESIN, Y
    [J]. NONLINEARITY, 1993, 6 (03) : 429 - 455
  • [2] Afraimovich V. S., 1993, Chaos, V3, P233, DOI 10.1063/1.165996
  • [3] CHAOS OF TRAVELING WAVES IN A DISCRETE CHAIN OF DIFFUSIVELY COUPLED MAPS
    AFRAIMOVICH, VS
    NEKORKIN, VI
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (03): : 631 - 637
  • [4] AFRAIMOVICH VS, 1992, RANDOM COMPUTATIONAL, V1, P422
  • [5] AFRAIMOVICH VS, 1995, JAPAN J IND APPL MAT, V12, P1
  • [6] AFRAIMOVICH VS, 1991, MATEMATICHESKOE MODE, V3, P65
  • [7] [Anonymous], 1992, NONLINEARITIES ACTIO
  • [8] [Anonymous], RANDOM COMPUT DYN
  • [9] Spacetime chaos in coupled map lattices
    Bunimovich, L. A.
    Sinai, Ya G.
    [J]. NONLINEARITY, 1988, 1 (04) : 491 - 516
  • [10] CHOW SN, 1995, IN PRESS SIAM J APPL, V55