Optofluidic devices with integrated solid-state nanopores

被引:11
|
作者
Liu, Shuo [1 ]
Hawkins, Aaron R. [2 ]
Schmidt, Holger [1 ]
机构
[1] Univ Calif Santa Cruz, Sch Engn, 1156 High St, Santa Cruz, CA 95064 USA
[2] Brigham Young Univ, ECEn Dept, 459 Clyde Bldg, Provo, UT 84602 USA
基金
美国国家科学基金会;
关键词
Single biomolecule detection; Particle manipulation; Liquid core waveguide; ARROW waveguides; Bioassay; System integration; Electro-optics; Fluorescence analysis; FLUORESCENCE CORRELATION SPECTROSCOPY; OPTICAL WAVE-GUIDES; PARTICLE DETECTION; SILICON-NITRIDE; DNA; MICROFLUIDICS; TRANSLOCATION; CORE; CHIP; LIGHT;
D O I
10.1007/s00604-016-1758-y
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This review (with 90 refs.) covers the state of the art in optofluidic devices with integrated solid-state nanopores for use in detection and sensing. Following an introduction into principles of optofluidics and solid-state nanopore technology, we discuss features of solid-state nanopore based assays using optofluidics. This includes the incorporation of solid-state nanopores into optofluidic platforms based on liquid-core anti-resonant reflecting optical waveguides (ARROWs), methods for their fabrication, aspects of single particle detection and particle manipulation. We then describe the new functionalities provided by solid-state nanopores integrated into optofluidic chips, in particular acting as smart gates for correlated electro-optical detection and discrimination of nanoparticles. This enables the identification of viruses and lambda-DNA, particle trajectory simulations, enhancing sensitivity by tuning the shape of nanopores. The review concludes with a summary and an outlook.
引用
收藏
页码:1275 / 1287
页数:13
相关论文
共 50 条
  • [21] Detecting DNA Depurination with Solid-State Nanopores
    Marshall, Michael M.
    Ruzicka, Jan A.
    Taylor, Ethan W.
    Hall, Adam R.
    PLOS ONE, 2014, 9 (07):
  • [22] Short channel effects on electrokinetic energy conversion in solid-state nanopores
    Zhang, Yan
    He, Yuhui
    Tsutsui, Makusu
    Miao, Xiang Shui
    Taniguchi, Masateru
    SCIENTIFIC REPORTS, 2017, 7
  • [23] SDS-assisted protein transport through solid-state nanopores
    Restrepo-Perez, Laura
    John, Shalini
    Aksimentiev, Aleksei
    Joo, Chirlmin
    Dekker, Cees
    NANOSCALE, 2017, 9 (32) : 11685 - 11693
  • [24] Fine-tuning the Size and Minimizing the Noise of Solid-state Nanopores
    Beamish, Eric
    Kwok, Harold
    Tabard-Cossa, Vincent
    Godin, Michel
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (80): : e51081
  • [25] Direct Analysis of Gene Synthesis Reactions Using Solid-State Nanopores
    Carson, Spencer
    Wick, Scott T.
    Carr, Peter A.
    Wanunu, Meni
    Aguilar, Carlos A.
    ACS NANO, 2015, 9 (12) : 12417 - 12424
  • [26] Interpreting the Conductance Blockades of DNA Translocations through Solid-State Nanopores
    Carlsen, Autumn T.
    Zahid, Osama K.
    Ruzicka, Jan
    Taylor, Ethan W.
    Hall, Adam R.
    ACS NANO, 2014, 8 (05) : 4754 - 4760
  • [27] Directly Observing the Motion of DNA Molecules near Solid-State Nanopores
    Ando, Genki
    Hyun, Changbae
    Li, Jiali
    Mitsui, Toshiyuki
    ACS NANO, 2012, 6 (11) : 10090 - 10097
  • [28] DNA Translocations through Solid-State Plasmonic Nanopores
    Nicoli, Francesca
    Verschueren, Daniel
    Klein, Misha
    Dekker, Cees
    Jonsson, Magnus P.
    NANO LETTERS, 2014, 14 (12) : 6917 - 6925
  • [29] Shrinking of Solid-state Nanopores by Direct Thermal Heating
    Asghar, Waseem
    Ilyas, Azhar
    Billo, Joseph Anthony
    Iqbal, Samir Muzaffar
    NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 6
  • [30] Origin of the electrophoretic force on DNA in solid-state nanopores
    van Dorp, Stijn
    Keyser, Ulrich F.
    Dekker, Nynke H.
    Dekker, Cees
    Lemay, Serge G.
    NATURE PHYSICS, 2009, 5 (05) : 347 - 351