On an Inverse Transmission Problem From Complex Eigenvalues

被引:17
作者
Buterin, S. A. [1 ]
Yang, C. -F. [2 ]
机构
[1] Saratov Univ, Dept Math, Astrakhanskaya 83, Saratov 410012, Russia
[2] Nanjing Univ Sci & Technol, Dept Appl Math, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Inverse spectral problem; transmission eigenvalue problem; complex transmission eigenvalues; SPECTRAL PROBLEM; OPERATOR;
D O I
10.1007/s00025-015-0512-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for unique determination of q(x) in the boundary value problem - y '' + q(x)y = lambda y, y(0) = 0, y(1) cos root lambda a = y'(1) sin root lambda a/root lambda for a > 1 it is sufficient to specify only a part of the spectrum with exception of infinitely many eigenvalues having the asymptotics lambda (k,1) = (a-1)(-2) pi(2) k (2) + O(1), k >= 1, and forming McLaughlin-Polyakov's almost real infinite subspectrum (McLaughlin and Polyakov in J Differ Equ 107:351-382, 1994). This result improves the uniqueness theorem in Aktosun et al. (Inverse Probl 27:115004, 2011).
引用
收藏
页码:859 / 866
页数:8
相关论文
共 22 条
[1]   The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation [J].
Aktosun, Tuncay ;
Gintides, Drossos ;
Papanicolaou, Vassilis G. .
INVERSE PROBLEMS, 2011, 27 (11)
[2]  
[Anonymous], 1977, OPERATORYI SHTURMA L
[3]  
Beals R.R., 1988, Direct and inverse scattering on the line, V28
[5]   On inverse spectral problem for non-selfadjoint Sturm-Liouville operator on a finite interval [J].
Buterin, S. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) :739-749
[6]   On an open question in the inverse transmission eigenvalue problem [J].
Buterin, S. A. ;
Yang, C-F ;
Yurko, V. A. .
INVERSE PROBLEMS, 2015, 31 (04)
[7]   Inverse spectral problems for non-selfadjoint second-order differential operators with Dirichlet boundary conditions [J].
Buterin, Sergey A. ;
Shieh, Chung-Tsun ;
Yurko, Vjacheslav A. .
BOUNDARY VALUE PROBLEMS, 2013,
[8]   On an inverse spectral problem for a convolution integro-differential operator [J].
Buterin, Sergey Alexandrovich .
RESULTS IN MATHEMATICS, 2007, 50 (3-4) :173-181
[9]  
Cakoni F., 2012, MSRI PUBLICATIONS, P527
[10]   On the use of transmission eigenvalues to estimate the index of refraction from far field data [J].
Cakoni, Fioralba ;
Colton, David ;
Monk, Peter .
INVERSE PROBLEMS, 2007, 23 (02) :507-522