Synchronization of two Rossler systems with switching coupling

被引:33
作者
Buscarino, Arturo [1 ]
Frasca, Mattia [1 ]
Branciforte, Marco [2 ]
Fortuna, Luigi [1 ]
Sprott, Julien Clinton [3 ]
机构
[1] Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, Viale Doria 6, I-95125 Catania, Italy
[2] ST Microelect, Stradale Primosole 50, I-95121 Catania, Italy
[3] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
关键词
Nonlinear dynamics and chaos; Time-varying coupling; Synchronization; Nonlinear circuits; CHAOTIC SYSTEMS; PHASE SYNCHRONIZATION; COMPLEX NETWORKS; CIRCUITS; OSCILLATORS; PARAMETERS;
D O I
10.1007/s11071-016-3269-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we study a system of two Rossler oscillators coupled through a time-varying link, periodically switching between two values. We analyze the system behavior with respect to the switching frequency. By applying an averaging technique under the hypothesis of high switching frequency, we find that, although each value of the coupling is not suitable for synchronization, switching between the two at a high frequency makes synchronization possible. However, we also find windows of synchronization below the value predicted by this technique, and we develop a master stability function to explain the appearance of these windows. The spectral properties of the system provide a useful tool for understanding the dynamics and synchronization failure in some intervals of the switching frequency. An experimental setup based on a digital/analog circuit is also presented showing experimental results which are in good agreement with the numerical analysis presented.
引用
收藏
页码:673 / 683
页数:11
相关论文
共 45 条
[21]   A global qualitative view of bifurcations and dynamics in the Rossler system [J].
Genesio, R. ;
Innocenti, G. ;
Gualdani, F. .
PHYSICS LETTERS A, 2008, 372 (11) :1799-1809
[22]   Paths to synchronization on complex networks [J].
Gomez-Gardenes, Jesus ;
Moreno, Yamir ;
Arenas, Alex .
PHYSICAL REVIEW LETTERS, 2007, 98 (03)
[23]   Generalized synchronization in relay systems with instantaneous coupling [J].
Gutierrez, R. ;
Sevilla-Escoboza, R. ;
Piedrahita, P. ;
Finke, C. ;
Feudel, U. ;
Buldu, J. M. ;
Huerta-Cuellar, G. ;
Jaimes-Reategui, R. ;
Moreno, Y. ;
Boccaletti, S. .
PHYSICAL REVIEW E, 2013, 88 (05)
[24]   Dynamics of Stochastically Blinking Systems. Part I: Finite Time Properties [J].
Hasler, Martin ;
Belykh, Vladimir ;
Belykh, Igor .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2013, 12 (02) :1007-1030
[25]   When are synchronization errors small? -: art. no. 036229 [J].
Illing, L ;
Bröcker, J ;
Kocarev, L ;
Parlitz, U ;
Abarbanel, HDI .
PHYSICAL REVIEW E, 2002, 66 (03)
[26]   Synchronization in On-Off Stochastic Networks: Windows of Opportunity [J].
Jeter, Russell ;
Belykh, Igor .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2015, 62 (05) :1260-1269
[27]   Controlling cluster synchronization by adapting the topology [J].
Lehnert, Judith ;
Hoevel, Philipp ;
Selivanov, Anton ;
Fradkov, Alexander ;
Schoell, Eckehard .
PHYSICAL REVIEW E, 2014, 90 (04)
[28]  
Li F., 2013, CHINESE PHYS B, V22
[29]   Autapse-induced synchronization in a coupled neuronal network [J].
Ma, Jun ;
Song, Xinlin ;
Jin, Wuyin ;
Wang, Chuni .
CHAOS SOLITONS & FRACTALS, 2015, 80 :31-38
[30]   Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system [J].
Ma, Jun ;
Li, Fan ;
Huang, Long ;
Jin, Wu-Yin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) :3770-3785