Synchronization of two Rossler systems with switching coupling

被引:33
作者
Buscarino, Arturo [1 ]
Frasca, Mattia [1 ]
Branciforte, Marco [2 ]
Fortuna, Luigi [1 ]
Sprott, Julien Clinton [3 ]
机构
[1] Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, Viale Doria 6, I-95125 Catania, Italy
[2] ST Microelect, Stradale Primosole 50, I-95121 Catania, Italy
[3] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
关键词
Nonlinear dynamics and chaos; Time-varying coupling; Synchronization; Nonlinear circuits; CHAOTIC SYSTEMS; PHASE SYNCHRONIZATION; COMPLEX NETWORKS; CIRCUITS; OSCILLATORS; PARAMETERS;
D O I
10.1007/s11071-016-3269-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we study a system of two Rossler oscillators coupled through a time-varying link, periodically switching between two values. We analyze the system behavior with respect to the switching frequency. By applying an averaging technique under the hypothesis of high switching frequency, we find that, although each value of the coupling is not suitable for synchronization, switching between the two at a high frequency makes synchronization possible. However, we also find windows of synchronization below the value predicted by this technique, and we develop a master stability function to explain the appearance of these windows. The spectral properties of the system provide a useful tool for understanding the dynamics and synchronization failure in some intervals of the switching frequency. An experimental setup based on a digital/analog circuit is also presented showing experimental results which are in good agreement with the numerical analysis presented.
引用
收藏
页码:673 / 683
页数:11
相关论文
共 45 条
[1]   Chimera states for coupled oscillators [J].
Abrams, DM ;
Strogatz, SH .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :174102-1
[2]  
Andrieu V, 2015, IEEE DECIS CONTR P, P2981, DOI 10.1109/CDC.2015.7402586
[3]  
[Anonymous], MATH BIOL ENG
[4]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[5]   Blinking model and synchronization in small-world networks with a time-varying coupling [J].
Belykh, IV ;
Belykh, VN ;
Hasler, M .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :188-206
[6]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[7]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[8]   Experimental robust synchronization of hyperchaotic circuits [J].
Buscarino, A. ;
Fortuna, L. ;
Frasca, M. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (18) :1917-1922
[9]  
Buscarino A., 2014, CONCISE GUIDE CHAOT
[10]   Chimera states in time-varying complex networks [J].
Buscarino, Arturo ;
Frasca, Mattia ;
Gambuzza, Lucia Valentina ;
Hoevel, Philipp .
PHYSICAL REVIEW E, 2015, 91 (02)