Some Tauberian theorems for iterations of Holder integrability method

被引:2
作者
Onder, Zerrin [1 ]
Canak, Ibrahim [1 ]
机构
[1] Ege Univ, Dept Math, Izmir, Turkey
关键词
Divergent integrals; (H; k); integrability; Tauberian theorems; Slowly decreasing functions; Slowly oscillating functions; 1 SUMMABILITY METHOD;
D O I
10.1007/s11117-019-00660-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a real or complex-valued function on [1,infinity) by sigma k(s(x))={1/xt integral 1x sigma k-1(s(t))dt,k >= 1s(x),k=0 for each nonnegative integer k. An improper integral integral 1 infinity f(x)dx is said to be integrable to a finite number mu by the k-th iteration of Holder or Cesaro mean method of order one, or for short, the (H, k) integrable to mu if limx ->infinity sigma k(s(x))=mu. In this case, we write s(x)->mu(H,k). It is clear that the (H, k) integrability method reduces to the ordinary convergence for k=0 and the (H, 1) integrability method is (C, 1) integrability method. It is known that limx ->infinity s(x)=mu implies limx ->infinity sigma k(s(x))=mu. But the converse of this implication is not true in general. In this paper, we obtain some Tauberian conditions for the iterations of Holder integrability method under which the converse implication holds.
引用
收藏
页码:1179 / 1193
页数:15
相关论文
共 13 条
[1]   Alternative proofs of some classical type Tauberian theorems for the Cesaro summability of integrals [J].
Canak, Ibrahim ;
Totur, Umit .
MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) :1558-1561
[2]   Tauberian conditions for Cesaro summability of integrals [J].
Canak, Ibrahim ;
Totur, Umit .
APPLIED MATHEMATICS LETTERS, 2011, 24 (06) :891-896
[3]   A Tauberian theorem for Cesaro summability of integrals [J].
Canak, Ibrahim ;
Totur, Umit .
APPLIED MATHEMATICS LETTERS, 2011, 24 (03) :391-395
[4]  
Dik M., 2001, MATH MORAV, V5, P57, DOI DOI 10.5937/MATMOR0105057D
[5]  
Hardy GH, 1910, P LOND MATH SOC, V8, P301
[6]   A theory of divergent integrals [J].
Laforgia, Andrea .
APPLIED MATHEMATICS LETTERS, 2009, 22 (06) :834-840
[7]  
Moricz F., 2000, ANAL MATH, V26, P53, DOI [10.1023/A:1010332530381, DOI 10.1023/A:1010332530381]
[8]  
M┬u┬Ericz F., 2004, C MATH, V99, P207, DOI DOI 10.4064/cm99-2-6
[9]   On divergent sequences and linear menu calculations [J].
Schmidt, R .
MATHEMATISCHE ZEITSCHRIFT, 1925, 22 :89-152
[10]  
Totur Ü, 2017, POSITIVITY, V21, P73, DOI 10.1007/s11117-016-0407-3