Crystal structure of plant acetohydroxyacid synthase, the target for several commercial herbicides

被引:22
作者
Garcia, Mario Daniel [1 ]
Wang, Jian-Guo [2 ,3 ,4 ]
Lonhienne, Thierry [1 ]
Guddat, Luke William [1 ]
机构
[1] Univ Queensland, Sch Chem & Mol Biosci, Bldg 76, Brisbane, Qld 4072, Australia
[2] Nankai Univ, Natl Pesticide Engn Res Ctr, State Key Lab, Tianjin 300071, Peoples R China
[3] Nankai Univ, Natl Pesticide Engn Res Ctr, Inst Elementoorgan Chem, Tianjin 300071, Peoples R China
[4] Nankai Univ, Coll Chem, Tianjin 300071, Peoples R China
基金
英国医学研究理事会;
关键词
acetohydroxyacid synthase; acetolactate synthase; herbicide; inhibitor; thiamine diphosphate; ESCHERICHIA-COLI; PYRUVATE OXIDASE; SULFONYLUREA HERBICIDES; THIAMIN DIPHOSPHATE; BINDING; INHIBITION; RESISTANCE; MECHANISM; COMPLEX;
D O I
10.1111/febs.14102
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acetohydroxyacid synthase (AHAS, EC 2.2.1.6) is the first enzyme in the branched-chain amino acid biosynthesis pathway. Five of the most widely used commercial herbicides (i.e. sulfonylureas, imidazolinones, triazolopy-rimidines, pyrimidinyl-benzoates and sulfonylamino-cabonyl-triazolinones) target this enzyme. Here we have determined the first crystal structure of a plant AHAS in the absence of any inhibitor (2.9 angstrom resolution) and it shows that the herbicide-binding site adopts a folded state even in the absence of an inhibitor. This is unexpected because the equivalent regions for herbicide binding in uninhibited Saccharomyces cerevisiae AHAS crystal structures are either disordered, or adopt a different fold when the herbicide is not present. In addition, the structure provides an explanation as to why some herbicides are more potent inhibitors of Arabidopsis thaliana AHAS compared to AHASs from other species (e.g. S. cerevisiae). The elucidation of the native structure of plant AHAS provides a new platform for future rational structure-based herbicide design efforts.
引用
收藏
页码:2037 / 2051
页数:15
相关论文
共 28 条
[1]   Towards automated crystallographic structure refinement with phenix.refine [J].
Afonine, Pavel V. ;
Grosse-Kunstleve, Ralf W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Moriarty, Nigel W. ;
Mustyakimov, Marat ;
Terwilliger, Thomas C. ;
Urzhumtsev, Alexandre ;
Zwart, Peter H. ;
Adams, Paul D. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2012, 68 :352-367
[2]   Binding and activation of thiamin diphosphate in acetohydroxyacid synthase [J].
Bar-Ilan, A ;
Balan, V ;
Tittmann, K ;
Golbik, R ;
Vyazmensky, M ;
Hübner, G ;
Barak, Z ;
Chipman, DM .
BIOCHEMISTRY, 2001, 40 (39) :11946-11954
[3]   Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase:: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants [J].
Chang, AK ;
Duggleby, RG .
BIOCHEMICAL JOURNAL, 1998, 333 :765-777
[4]   COMMON ANCESTRY OF ESCHERICHIA-COLI PYRUVATE OXIDASE AND THE ACETOHYDROXY ACID SYNTHASES OF THE BRANCHED-CHAIN AMINO-ACID BIOSYNTHETIC-PATHWAY [J].
CHANG, YY ;
CRONAN, JE .
JOURNAL OF BACTERIOLOGY, 1988, 170 (09) :3937-3945
[5]  
CHANG YY, 1993, J BIOL CHEM, V268, P3911
[6]  
DeLano WL, 2002, PYMOL MOLECULAR GRAP
[7]   Systematic characterization of mutations in yeast acetohydroxyacid synthase - Interpretation of herbicide-resistance data [J].
Duggleby, RG ;
Pang, SS ;
Yu, HQ ;
Guddat, LW .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2003, 270 (13) :2895-2904
[8]  
Duggleby RG, 2000, J BIOCHEM MOL BIOL, V33, P1
[9]   Structure and mechanism of inhibition of plant acetohydroxyacid synthase [J].
Duggleby, Ronald G. ;
McCourt, Jennifer A. ;
Guddat, Luke W. .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2008, 46 (03) :309-324
[10]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132