Nonlinear problems on the Sierpinski gasket

被引:16
作者
Bisci, Giovanni Molica [1 ]
Repovs, Dusan [2 ,3 ]
Servadei, Raffaella [4 ]
机构
[1] Univ Mediterranea Reggio Calabria, Dipartimento PAU, Via Melissari 24, I-89124 Reggio Di Calabria, Italy
[2] Univ Ljubljana, Fac Educ, Kardeljeva Pl 16, Ljubljana 1000, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Kardeljeva Pl 16, Ljubljana 1000, Slovenia
[4] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Pesaro E Urbino, Italy
关键词
Sierpinski gasket; Fractal domains; Nonlinear elliptic equation; Weak Laplacian; SIERPINSKI GASKET; ELLIPTIC-EQUATIONS; MULTIPLE SOLUTIONS; DIRICHLET PROBLEM; FRACTALS; THEOREM;
D O I
10.1016/j.jmaa.2017.03.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns with a class of elliptic equations on fractal domains depending on a real parameter. Our approach is based on variational methods. More precisely, the existence of at least two non-trivial weak (strong) solutions for the treated problem is obtained exploiting a local minimum theorem for differentiable functionals defined on reflexive Banach spaces. A special case of the main result improves a classical application of the Mountain Pass Theorem in the fractal setting, given by Falconer and Hu in [14]. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:883 / 895
页数:13
相关论文
共 29 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   A note on a problem by Ricceri on the Ambrosetti-Rabinowitz condition [J].
Anello, Giovanni .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (06) :1875-1879
[3]  
[Anonymous], 2010, Encyclopedia of Mathematics and its Applications
[4]  
[Anonymous], 1986, CBMS REG C SER MATH
[5]  
[Anonymous], 2000, CONSTRCTIVE EXPT NON, V27, P275
[6]  
Bisci GM, 2015, P AM MATH SOC, V143, P2959
[7]   VARIATIONAL ANALYSIS FOR A NONLINEAR ELLIPTIC PROBLEM ON THE SIERPINSKI GASKET [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (04) :941-953
[8]   Infinitely many solutions for a class of nonlinear elliptic problems on fractals [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (3-4) :187-191
[9]  
Breckner B.E., 2013, MATHEMATICA, V55, P142
[10]   A short note on harmonic functions and zero divisors on the Sierpinski fractal [J].
Breckner, Brigitte E. .
ARCHIV DER MATHEMATIK, 2016, 106 (02) :183-188