Low-velocity impact of pressurised pipelines

被引:83
作者
Jones, Norman [1 ]
Birch, R. S. [1 ]
机构
[1] Univ Liverpool, Impact Res Ctr, Dept Engn, Liverpool L69 3GH, Merseyside, England
关键词
Pipelines; Impact loading; Internal pressure; Ductile deformations; Failure; FAILURE; PERFORATION; BEHAVIOR; BEAMS;
D O I
10.1016/j.ijimpeng.2009.05.006
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Experimental tests are reported on steel pipelines which have been struck by a relatively large rigid wedge-shaped mass travelling up to 10.4 m/s. A pipeline is supported across a span, is fully clamped at both ends and is struck at the mid-span and at the one-quarter span positions. Most of the pipelines are pressurised with a nitrogen gas. The initial impact energy produces large inelastic ductile deformations of the pipeline and, in some cases, failure. A method is introduced which idealises a deformed pipeline cross-section in order to estimate the local and global components of the total displacement from experimental measurements of the final cross-section. Comparisons are also made with several previously published experimental studies for which sufficient data are available to make the calculations. A clearer insight into pipeline behaviour is achieved than is possible only with values of the maximum permanent transverse displacements which have been reported in previous experimental studies. This information should assist with pipeline design, provide more rigorous validation for numerical schemes and contribute to a better understanding of pipeline failure. Recommendations are made on the accuracy and suitability of some well known empirical equations for predicting the permanent deformations of pressurised and empty pipelines caused by large rigid masses, relative to the pipeline mass, travelling with low initial impact velocities up to about 15 m/s. (C) 2009 Published by Elsevier Ltd.
引用
收藏
页码:207 / 219
页数:13
相关论文
共 50 条
  • [21] Experimental and numerical analysis of low-velocity impact of plastic laminates
    Ramakrishnan, K. R.
    Shankar, K.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2013, 36 (11) : 1153 - 1163
  • [22] Reliability Analysis of Composite Components Under Low-Velocity Impact
    Patel, Shivdayal
    Gupta, V. K.
    RELIABILITY, SAFETY AND HAZARD ASSESSMENT FOR RISK-BASED TECHNOLOGIES, 2020, : 717 - 725
  • [23] The low-velocity impact response of fiber-metal laminates
    Fan, J.
    Cantwell, W. J.
    Guan, Z. W.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2011, 30 (01) : 26 - 35
  • [24] Low-velocity impact behaviour of titanium honeycomb sandwich structures
    Xie, Zonghong
    Zhao, Wei
    Wang, Xinnian
    Hang, Jiutao
    Yue, Xishan
    Zhou, Xiang
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2018, 20 (08) : 1009 - 1027
  • [25] Low-velocity impact energy partition in GLARE
    Moriniere, F. D.
    Alderliesten, R. C.
    Benedictus, R.
    MECHANICS OF MATERIALS, 2013, 66 : 59 - 68
  • [26] The influence of fibre orientation in aluminium-carbon laminates on low-velocity impact resistance
    Jakubczak, Patryk
    Bienias, Jaroslaw
    Surowska, Barbara
    JOURNAL OF COMPOSITE MATERIALS, 2018, 52 (08) : 1005 - 1016
  • [27] Low-velocity impact on high-strength steel sheets: An experimental and numerical study
    Gruben, G.
    Langseth, M.
    Fagerholt, E.
    Hopperstad, O. S.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2016, 88 : 153 - 171
  • [28] Enhanced ANN Predictive Model for Composite Pipes Subjected to Low-Velocity Impact Loads
    Ghandourah, Emad
    Khatir, Samir
    Banoqitah, Essam Mohammed
    Alhawsawi, Abdulsalam Mohammed
    Benaissa, Brahim
    Wahab, Magd Abdel
    BUILDINGS, 2023, 13 (04)
  • [29] Repeated low-velocity impact response and damage mechanism of glass fiber aluminium laminates
    Li, Lijun
    Sun, Lingyu
    Wang, Taikun
    Kang, Ning
    Cao, Wan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2019, 84 : 995 - 1010
  • [30] An experimental investigation on low-velocity impact response of a novel corrugated sandwiched composite structure
    Zhao, Tian
    Jiang, Yongbo
    Zhu, Yangxuan
    Wan, Zhishuai
    Xiao, Dengbao
    Li, Ying
    Li, Huimin
    Wu, Cheng
    Fang, Daining
    COMPOSITE STRUCTURES, 2020, 252