Low-velocity impact of pressurised pipelines

被引:83
|
作者
Jones, Norman [1 ]
Birch, R. S. [1 ]
机构
[1] Univ Liverpool, Impact Res Ctr, Dept Engn, Liverpool L69 3GH, Merseyside, England
关键词
Pipelines; Impact loading; Internal pressure; Ductile deformations; Failure; FAILURE; PERFORATION; BEHAVIOR; BEAMS;
D O I
10.1016/j.ijimpeng.2009.05.006
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Experimental tests are reported on steel pipelines which have been struck by a relatively large rigid wedge-shaped mass travelling up to 10.4 m/s. A pipeline is supported across a span, is fully clamped at both ends and is struck at the mid-span and at the one-quarter span positions. Most of the pipelines are pressurised with a nitrogen gas. The initial impact energy produces large inelastic ductile deformations of the pipeline and, in some cases, failure. A method is introduced which idealises a deformed pipeline cross-section in order to estimate the local and global components of the total displacement from experimental measurements of the final cross-section. Comparisons are also made with several previously published experimental studies for which sufficient data are available to make the calculations. A clearer insight into pipeline behaviour is achieved than is possible only with values of the maximum permanent transverse displacements which have been reported in previous experimental studies. This information should assist with pipeline design, provide more rigorous validation for numerical schemes and contribute to a better understanding of pipeline failure. Recommendations are made on the accuracy and suitability of some well known empirical equations for predicting the permanent deformations of pressurised and empty pipelines caused by large rigid masses, relative to the pipeline mass, travelling with low initial impact velocities up to about 15 m/s. (C) 2009 Published by Elsevier Ltd.
引用
收藏
页码:207 / 219
页数:13
相关论文
共 50 条
  • [1] Impact behaviour of pressurised pipelines
    Jones, N.
    Birch, R. S.
    STRUCTURES UNDER SHOCK AND IMPACT X, 2008, 98 : 219 - 228
  • [2] Low-velocity impact of honeycomb sandwich composite plates
    Zhang, Taotao
    Yan, Ying
    Li, Jianfeng
    Luo, Haibo
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2016, 35 (01) : 8 - 32
  • [3] The response of hybrid titanium carbon laminates to the low-velocity impact
    Jakubczak, P.
    Bienias, J.
    ENGINEERING FRACTURE MECHANICS, 2021, 246
  • [4] Low-velocity impact response of thermoplastic composite sandwich panels with the intersected corrugated core
    Pan, Xin
    Chen, Liming
    Deng, Jianqiang
    Zhao, Wanqi
    Jin, Shuai
    Du, Bing
    Chen, Yong
    Li, Weiguo
    Liu, Tao
    COMPOSITE STRUCTURES, 2023, 324
  • [5] Modelling of low-velocity impact and compression after impact of CFRP at elevated temperatures
    Koerbelin, Johann
    Junge, Nilas
    Fiedler, Bodo
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 147
  • [6] Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores
    Sun, Guangyong
    Wang, Erdong
    Wang, Hongxu
    Xiao, Zhi
    Li, Qing
    MATERIALS & DESIGN, 2018, 160 : 1117 - 1136
  • [7] A theoretical study of low-velocity impact of geometrically asymmetric sandwich beams
    Zhang, Jianxun
    Qin, Qinghua
    Xiang, Chunping
    Wang, Zhengjin
    Wang, T. J.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2016, 96 : 35 - 49
  • [8] Low-velocity impact response of composite sandwich structures: Modelling and experiment
    Chen, Yuan
    Hou, Shujuan
    Fu, Kunkun
    Han, Xu
    Ye, Lin
    COMPOSITE STRUCTURES, 2017, 168 : 322 - 334
  • [9] Experimental analysis and simulation of low-velocity impact damage of composite laminates
    Falco, O.
    Lopes, C. S.
    Sommer, D. E.
    Thomson, D.
    Avila, R. L.
    Tijs, B. H. A. H.
    COMPOSITE STRUCTURES, 2022, 287
  • [10] Experimental study on axially preloaded circular steel tubes subjected to low-velocity transverse impact
    Zhi, Xu-Dong
    Zhang, Rong
    Fan, Feng
    Huang, Chao
    THIN-WALLED STRUCTURES, 2018, 130 : 161 - 175