Observing electron transport and percolation in selected bulk heterojunctions bearing fullerene derivatives, non-fullerene small molecules, and polymeric acceptors

被引:38
作者
Yin, Hang [1 ,2 ]
Yan, Jie [1 ,2 ]
Ho, Johnny Ka Wai [1 ,2 ]
Liu, Delong [3 ]
Bi, Pengqing [4 ]
Ho, Carr Hoi Yi [1 ,2 ]
Hao, Xiaotao [4 ]
Hou, Jianhui [5 ]
Li, Gang [3 ]
So, Shu Kong [1 ,2 ]
机构
[1] Hong Kong Baptist Univ, Dept Phys, Kowloon Tong, Hong Kong, Peoples R China
[2] Hong Kong Baptist Univ, Inst Adv Mat, Kowloon Tong, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Elect & Informat Engn, Hung Hom, Kowloon, Hong Kong, Peoples R China
[4] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan, Shandong, Peoples R China
[5] Chinese Acad Sci, State Key Lab Polymer Phys & Chem, Beijing Natl Lab Mol Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Electron percolation; Organic solar cells; All-polymer solar cells; Effective volume fraction; Moisture stability; Acceptor topology; ORGANIC SOLAR-CELLS; ADMITTANCE SPECTROSCOPY; IMPURITY LEVELS; DEVICE PHYSICS; MORPHOLOGY; EFFICIENT; CARRIER; STABILITY; DYNAMICS; MOBILITY;
D O I
10.1016/j.nanoen.2019.103950
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We systematically study how electrons achieve percolation pathways in a bulk-heterojunction (BHJ) blend as the weight fraction of the electron acceptor is altered. Three different classes of BHJs are explored: BHJs that contain (1) fullerene-based acceptors, (2) non-fullerene small molecules, and (3) polymer acceptors. The nano-topologies of acceptors in (1) to (3) can be approximately associated with spheres, oblates (plates) and prolates (long rods), respectively. We discover that the weight fraction of the acceptor for electron percolation to complete is successively reduced in the order of fullerenes (0.32), non-fullerene (NF) small molecules (0.25), and polymers (0.11). A new parameter, namely, the effective volume fraction, chi, is introduced to quantify the fraction of the acceptor moieties that can contribute to electron transport in the BHJs. The electron percolation regions can be fitted with a model that considers the shapes of the acceptors and their chi in the BHJs. An all-polymer BHJ containing PTB7-Th:N2200 exhibits the largest chi (0.6-0.8), indicating N2200 acceptors are the most effective in transportation of electrons. All-polymer BHJs can better preserve their electron transport capability arising from composition variations, and they are immuned from the introduction of inert materials or the exposure of moisture, in stark contrast to fullerene-based BHJs. Our results correlate the electron transport behaviors to the nano-topologies of acceptors for BHJ cells, and offer guidance to tune the compositions and understand the nano-morphology of BHJ cells using different classes of acceptors.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Impact of Dimerization on Phase Separation and Crystallinity in Bulk Heterojunction Films Containing Non-Fullerene Acceptors [J].
Stoltzfus, Dani M. ;
Clulow, Andrew J. ;
Jin, Hui ;
Burn, Paul L. ;
Gentle, Ian R. .
MACROMOLECULES, 2016, 49 (12) :4404-4415
[22]   Development of non-fullerene electron acceptors for efficient organic photovoltaics [J].
He, Qiao ;
Kafourou, Panagiota ;
Hu, Xiantao ;
Heeney, Martin .
SN APPLIED SCIENCES, 2022, 4 (09)
[23]   Corannulene derivatives as non-fullerene acceptors in solution-processed bulk heterojunction solar cells [J].
Lu, Ru-Qiang ;
Zheng, Yu-Qing ;
Zhou, Yi-Nyu ;
Yan, Xiao-Yun ;
Lei, Ting ;
Shi, Ke ;
Zhou, Yan ;
Pei, Jian ;
Zoppi, Laura ;
Baldridge, Kim K. ;
Siegel, Jay S. ;
Cao, Xiao-Yu .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (48) :20515-20519
[24]   Photostable organic solar cells based on non-fullerene acceptors with an aminated bathocuproine electron transport layer [J].
Kim, Yong Ryun ;
Lee, Sanseong ;
Kim, Juae ;
Oh, Juhui ;
Kim, Ju-Hyeon ;
Ki, Taeyoon ;
Oh, Chang-Mok ;
Hwang, In-Wook ;
Suh, Hongsuk ;
Lee, Kwanghee ;
Kim, Heejoo .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (09) :4510-4518
[25]   Simple non-fullerene electron acceptors with unfused core for organic solar cells [J].
Li, Yao ;
Xu, Yunhua ;
Yang, Fan ;
Jiang, Xudong ;
Li, Cheng ;
You, Shengyong ;
Li, Weiwei .
CHINESE CHEMICAL LETTERS, 2019, 30 (01) :222-224
[26]   Simple non-fullerene electron acceptors with unfused core for organic solar cells [J].
Yao Li ;
Yunhua Xu ;
Fan Yang ;
Xudong Jiang ;
Cheng Li ;
Shengyong You ;
Weiwei Li .
Chinese Chemical Letters, 2019, 30 (01) :222-224
[27]   Molecular tuning of non-fullerene electron acceptors in organic photovoltaics: a theoretical study [J].
Yu, Hai-Yuan ;
Zhang, Cai-Rong ;
Zhang, Mei-Ling ;
Liu, Xiao-Meng ;
Gong, Ji-Jun ;
Liu, Zi-Jiang ;
Wu, You-Zhi ;
Chen, Hong-Shan .
NEW JOURNAL OF CHEMISTRY, 2022, 46 (42) :20204-20216
[28]   Star-shaped isoindigo-based small molecules as potential non-fullerene acceptors in bulk heterojunction solar cells [J].
Liu, Xin ;
Xie, Yuan ;
Zhao, Haobin ;
Cai, Xinyi ;
Wu, Hongbin ;
Su, Shi-Jian ;
Cao, Yong .
NEW JOURNAL OF CHEMISTRY, 2015, 39 (11) :8771-8779
[29]   Isomers of Dithienocyclopentapyrene-Based Non-Fullerene Electron Acceptors: Configuration Effect on Photoelectronic Properties [J].
Wu, Jianglin ;
Chen, Yao ;
Hu, Bin ;
Pang, Zhenguo ;
Lu, Zhiyun ;
Huang, Yan .
CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (25) :6385-6391
[30]   Computational Study on the Search for Non-Fullerene Acceptors, Examination of Interface Geometry, and Investigation of Electron Transfer [J].
Imamura, Yutaka ;
Suganuma, Marina ;
Hada, Masahiko .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (29) :17678-17685