Deep Learning Techniques for Beef Cattle Body Weight Prediction

被引:29
作者
Gjergji, Mikel [1 ]
Weber, Vanessa de Moraes [2 ,3 ]
Campos Silva, Luiz Otavio [4 ]
Gomes, Rodrigo da Costa [4 ]
Alves Campos de Araujo, Thiago Luis [5 ]
Pistori, Hemerson [2 ,6 ]
Alvarez, Marco [1 ]
机构
[1] Univ Rhode Isl, Dept Comp Sci & Stat, Kingston, RI 02881 USA
[2] Dom Bosco Catholic Univ UCDB, Campo Grande, MS, Brazil
[3] State Univ Mato Grosso do Sul UEMS, Campo Grande, MS, Brazil
[4] Embrapa Beef Cattle, Brazilian Agr Res Corp, Campo Grande, MS, Brazil
[5] Fed Univ Ceara UFC, Fortaleza, Ceara, Brazil
[6] Fed Univ Mato Grosso do Sul UFMS, Coll Comp, Campo Grande, MS, Brazil
来源
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2020年
关键词
deep learning; weight; cattle; attention based models; convolutional neural networks; recurrent neural networks; BEHAVIOR;
D O I
10.1109/ijcnn48605.2020.9207624
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Following the weight of beef cattle is of great importance to the producer. The activities of nutrition, management, genetics, health and environment can benefit from the weight control of these animals. We explore different deep learning models performance in the regression task of predicting cattle weight. This is a hard problem since moving from 3-D space to 2-D images presents a loss of information in object shape, making weight prediction more difficult. A model that produces good results in this problem could potentially be applied more abstractly to similar problem spaces. We analyzed convolutional neural networks, RNN/CNN networks, Recurrent Attention Models, and Recurrent Attention Models with Convolutional Neural Networks, and show that convolutional neural networks achieve the highest performance. Our top model averages a MAE of 23.19 kg. This is nearly half the error as previous top linear regression models which reached an error of 38.46 kg.
引用
收藏
页数:8
相关论文
共 40 条
  • [1] Anglart D., 2014, Automatic estimation of body weight and body condition score in dairy cows using 3D imaging technique
  • [2] Perspectives on the use of unmanned aerial systems to monitor cattle
    Arnal Barbedo, Jayme Garcia
    Koenigkan, Luciano Vieira
    [J]. OUTLOOK ON AGRICULTURE, 2018, 47 (03) : 214 - 222
  • [3] Ba J., 2014, Multiple object recognition with visual attention
  • [4] Development of an automatic cow body condition scoring using body shape signature and Fourier descriptors
    Bercovich, A.
    Edan, Y.
    Alchanatis, V.
    Moallem, U.
    Parmet, Y.
    Honig, H.
    Maltz, E.
    Antler, A.
    Halachmi, I.
    [J]. JOURNAL OF DAIRY SCIENCE, 2013, 96 (12) : 8047 - 8059
  • [5] Estimation of body weight by an indirect measurement method in developing replacement Holstein heifers raised on pasture
    Bretschneider, G.
    Cuatrin, A.
    Arias, D.
    Vottero, D.
    [J]. ARCHIVOS DE MEDICINA VETERINARIA, 2014, 46 (03) : 439 - 443
  • [6] Chen Kan., 2015, CoRR
  • [7] Automated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phases
    Cominotte, A.
    Fernandes, A. F. A.
    Dorea, J. R. R.
    Rosa, G. J. M.
    Ladeira, M. M.
    van Cleef, E. H. C. B.
    Pereira, G. L.
    Baldassini, W. A.
    Machado Neto, O. R.
    [J]. LIVESTOCK SCIENCE, 2020, 232
  • [8] Pix2Face: Direct 3D Face Model Estimation
    Crispell, Daniel
    Bazik, Maxim
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2512 - 2518
  • [9] Fanelli G, 2011, PROC CVPR IEEE, P617, DOI 10.1109/CVPR.2011.5995458
  • [10] A novel automated system to acquire biometric and morphological measurements and predict body weight of pigs via 3D computer vision
    Fernandes, Arthur F. A.
    Dorea, Joao R. R.
    Fitzgerald, Robert
    Herring, William
    Rosa, Guilherme J. M.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2019, 97 (01) : 496 - 508