On sums of integrals of powers of the zeta-function in short intervals

被引:0
作者
Ivic, Aleksandar [1 ]
机构
[1] Univ Beogradu, Katedra Math RFG, Belgrade 11000, Serbia
来源
MULTIPLE DIRICHLET SERIES, AUTOMORPHIC FORMS, AND ANALYTIC NUMBER THEORY | 2006年 / 75卷
关键词
Riemann zeta-function; Mellin transforms; power moments;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The modified Mellin transform Z(k)(s) = integral(infinity)(1)vertical bar zeta(1/2+ix)vertical bar(2k)x(-s) dx, where k is an element of N is fixed, is used to obtain estimates for Sigma(R)(r=1) integral(tr-G) (tr+g) vertical bar zeta(1/2+it)vertical bar(2k) dt (T < t(1)<...< t(R)< 2T), where t(r+l) - t(r) >= G (r = 1,..., R - 1), T-epsilon <= G <= T1-epsilon. These results can be used to derive bounds for the moments of vertical bar zeta(1/2 +it)vertical bar.
引用
收藏
页码:231 / 242
页数:12
相关论文
共 19 条
[1]   Multiple Dirichlet series and moments of zeta and L-functions [J].
Diaconu, A ;
Goldfeld, D ;
Hoffstein, J .
COMPOSITIO MATHEMATICA, 2003, 139 (03) :297-360
[2]   12TH POWER MOMENT OF THE RIEMANN-FUNCTION [J].
HEATHBROWN, DR .
QUARTERLY JOURNAL OF MATHEMATICS, 1978, 29 (116) :443-462
[3]  
Ivic A, 2000, ACTA ARITH, V95, P305
[4]  
Ivic A, 2002, ANALYTIC AND PROBABILISTIC METHODS IN NUMBER THEORY, P83
[5]  
IVIC A, 1994, P LOND MATH SOC, V69, P309
[6]   POWER MOMENTS OF THE RIEMANN ZETA-FUNCTION OVER SHORT INTERVALS [J].
IVIC, A .
ARCHIV DER MATHEMATIK, 1994, 62 (05) :418-424
[7]   ON THE 4TH POWER MOMENT OF THE RIEMANN ZETA-FUNCTION [J].
IVIC, A ;
MOTOHASHI, Y .
JOURNAL OF NUMBER THEORY, 1995, 51 (01) :16-45
[8]   On the error term for the fourth moment of the Riemann zeta-function [J].
Ivic, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 :21-32
[9]   On some conjectures and results for the Riemann zeta-function and Hecke series [J].
Ivic, A .
ACTA ARITHMETICA, 2001, 99 (02) :115-145
[10]  
IVIC A, MOMENTS RIEMANN ZE 1