The epigenetic bottleneck of neurodegenerative and psychiatric diseases

被引:75
作者
Sananbenesi, Farahnaz [1 ]
Fischer, Andre [1 ]
机构
[1] European Neurosci Inst, Lab Aging & Cognit Dis, D-37077 Gottingen, Germany
关键词
Alzheimer's disease; epigenetics; HDAC inhibitors; histone acetylation; learning and memory; neurodegenerative diseases; HISTONE DEACETYLASE INHIBITORS; DNA METHYLATION; MEMORY FORMATION; MOUSE MODEL; ENVIRONMENTAL ENRICHMENT; SYNAPTIC PLASTICITY; GABAERGIC NEURONS; PREFRONTAL CORTEX; COGNITIVE DEFICIT; GENE-EXPRESSION;
D O I
10.1515/BC.2009.131
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The orchestrated expression of genes is essential for the development and survival of every organism. In addition to the role of transcription factors, the availability of genes for transcription is controlled by a series of proteins that regulate epigenetic chromatin remodeling. The two most studied epigenetic phenomena are DNA methylation and histone-tail modifications. Although a large body of literature implicates the deregulation of histone acetylation and DNA methylation with the pathogenesis of cancer, recently epigenetic mechanisms have also gained much attention in the neuroscientific community. In fact, a new field of research is rapidly emerging and there is now accumulating evidence that the molecular machinery that regulates histone acetylation and DNA methylation is intimately involved in synaptic plasticity and is essential for learning and memory. Importantly, dysfunction of epigenetic gene expression in the brain might be involved in neurodegenerative and psychiatric diseases. In particular, it was found that inhibition of histone deacetylases attenuates synaptic and neuronal loss in animal models for various neurodegenerative diseases and improves cognitive function. In this article, we will summarize recent data in the novel field of neuroepigenetics and discuss the question why epigenetic strategies are suitable therapeutic approaches for the treatment of brain diseases.
引用
收藏
页码:1145 / 1153
页数:9
相关论文
共 70 条
[1]   Chromatin alterations associated with down-regulated metabolic gene expression in the prefrontal cortex of subjects with schizophrenia [J].
Akbarian, S ;
Ruehl, MG ;
Bliven, E ;
Luiz, LA ;
Peranelli, AC ;
Baker, SP ;
Roberts, RC ;
Burnicy, WE ;
Conley, RC ;
Jones, EG ;
Tamminga, CA ;
Guo, Y .
ARCHIVES OF GENERAL PSYCHIATRY, 2005, 62 (08) :829-840
[2]   Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice:: A model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration [J].
Alarcón, JM ;
Malleret, G ;
Touzani, K ;
Vronskaya, S ;
Ishii, S ;
Kandel, ER ;
Barco, A .
NEURON, 2004, 42 (06) :947-959
[3]   New nomenclature for chromatin-modifying enzymes [J].
Allis, C. David ;
Berger, Shelley L. ;
Cote, Jacques ;
Dent, Sharon ;
Jenuwien, Thomas ;
Kouzarides, Tony ;
Pillus, Lorraine ;
Reinberg, Danny ;
Shi, Yang ;
Shiekhattar, Ramin ;
Shilatifard, Ali ;
Workman, Jerry ;
Zhang, Yi .
CELL, 2007, 131 (04) :633-636
[4]   Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy [J].
Avila, Amy M. ;
Burnett, Barrington G. ;
Taye, Addis A. ;
Gabanella, Francesca ;
Knight, Melanie A. ;
Hartenstein, Parvana ;
Cizman, Ziga ;
Di Prospero, Nicholas A. ;
Pellizzoni, Livio ;
Fischbeck, Kenneth H. ;
Sumner, Charlotte J. .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (03) :659-671
[5]   Gene expression changes in the course of normal brain aging are sexually dimorphic [J].
Berchtold, Nicole C. ;
Cribbs, David H. ;
Coleman, Paul D. ;
Rogers, Joseph ;
Head, Elizabeth ;
Kim, Ronald ;
Beach, Tom ;
Miller, Carol ;
Troncoso, Juan ;
Trojanowski, John Q. ;
Zielke, H. Ronald ;
Cotman, Carl W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (40) :15605-15610
[6]   The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear [J].
Bredy, Timothy W. ;
Barad, Mark .
LEARNING & MEMORY, 2008, 15 (01) :39-45
[7]   Distribution of histone deacetylases 1-11 in the rat brain [J].
Broide, Ron S. ;
Redwine, Jeff M. ;
Aftahi, Najla ;
Young, Warren ;
Bloom, Floyd E. ;
Winrow, Christopher J. .
JOURNAL OF MOLECULAR NEUROSCIENCE, 2007, 31 (01) :47-58
[8]   Histone deacetylase inhibitors as therapeutics for polyglutamine disorders [J].
Butler, Rachel ;
Bates, Gillian P. .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (10) :784-796
[9]   The story of Rett syndrome: From clinic to neurobiology [J].
Chahrour, Maria ;
Zoghbi, Huda Y. .
NEURON, 2007, 56 (03) :422-437
[10]   MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number [J].
Chao, Hsiao-Tuan ;
Zoghbi, Huda Y. ;
Rosenmund, Christian .
NEURON, 2007, 56 (01) :58-65