Analysis of PCA and LDA Features for Facial Expression Recognition Using SVM and HMM Classifiers

被引:19
作者
Varma, Satishkumar [1 ]
Shinde, Megha [1 ]
Chavan, Satishkumar S. [2 ]
机构
[1] Pillai Coll Engn, Navi Mumbai, India
[2] Don Bosco Inst Technol, Mumbai, Maharashtra, India
来源
TECHNO-SOCIETAL 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SOCIETAL APPLICATIONS - VOL 1 | 2020年
关键词
Facial expression recognition; Emotion classification; Principal component analysis; Linear discriminant analysis; Support vector machine; Hidden Markov model;
D O I
10.1007/978-3-030-16848-3_11
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:109 / 119
页数:11
相关论文
共 17 条
[1]  
Anissa B., 2013, INT J COMPUT SCI ISS, V10, P171
[2]  
[Anonymous], 2000, Technical Report
[3]  
[Anonymous], 2009, LIBOR SPACEKS FACIAL
[4]  
[Anonymous], 2003, PRACTICAL GUIDE SUPP
[5]  
Bakshi U., 2014, International Journal of Emerging Trends Technology in Computer Science, P233
[6]  
Chapelle O, 1999, P ADV NEUR INF PROC
[7]   Independent comparative study of PCA, ICA, and LDA on the FERET data set [J].
Delac, K ;
Grgic, M ;
Grgic, S .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2005, 15 (05) :252-260
[8]  
Dhall S., 2014, International Journal of Advanced Engineering Technology, V7, P01
[9]  
Gosavi K., 2013, INT J SOFT COMPUTING, V3, P258
[10]  
Kaur A., 2015, INT J ADV RES COMPUT, P308