Proportional and derivative state-feedback decoupling of linear systems

被引:9
作者
Estrada, MB
Malabre, M
机构
[1] Inst Politecn Nacl, CINVESTAV, Dept Automat Control, Mexico City 07000, DF, Mexico
[2] IRCCyN, CNRS, UMR 6597, F-44321 Nantes 03, France
关键词
decoupling; geometric approach; implicit systems; linear system theory; proportional and derivative feedback;
D O I
10.1109/9.847111
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider here the row-by-row decoupling of linear time-invariant systems by proportional and derivative state feedback. Our contribution, with respect to previous results, is that our procedure is based on simple operator (say matrices) manipulations, without any need to use a canonical form. The only assumptions for applying such a decoupling strategy are that the system is right invertible (which is a necessary condition to ensure solvability) and minimum phase. An illustrative example is proposed.
引用
收藏
页码:730 / 733
页数:4
相关论文
共 20 条
[1]   THE PENCIL (SE-A) AND CONTROLLABILITY-OBSERVABILITY FOR GENERALIZED LINEAR-SYSTEMS - A GEOMETRIC APPROACH [J].
ARMENTANO, VA .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (04) :616-638
[2]   THE DISTURBANCE DECOUPLING PROBLEM FOR IMPLICIT LINEAR DISCRETE-TIME-SYSTEMS [J].
BANASZUK, A ;
KOCIECKI, M ;
PRZYLUSKI, KM .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (06) :1270-1293
[3]  
Bonilla M, 1995, KYBERNETIKA, V31, P669
[4]   On the approximation of non-proper control laws [J].
Bonilla, M ;
Malabre, M ;
Fonseca, M .
INTERNATIONAL JOURNAL OF CONTROL, 1997, 68 (04) :775-796
[5]  
BONILLA ME, 1991, 30TH P IEEE DEC CONT, P1425
[6]  
Brunovsky P., 1970, KYBERNETIKA PRAHA, V6, P173
[7]   DECOUPLING IN DESIGN AND SYNTHESIS OF MULTIVARIABLE CONTROL SYSTEMS [J].
FALB, PL ;
WOLOVICH, WA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1967, AC12 (06) :651-+
[8]  
Gantmacher F.R, 1959, THEORY MATRICES 2
[9]  
Grizzle J. W., 1989, Mathematics of Control, Signals, and Systems, V2, P315, DOI 10.1007/BF02551275
[10]  
ICART S, 1990, JOINT C NEW TRENDS S, P425